Refine Your Search

Topic

Search Results

Standard

Electric Vehicle Power Transfer System Using a Three-Phase Capable Coupler

2020-01-25
WIP
J3068

This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer to an Electric Vehicle using a Coupler capable of, but not limited to, transferring three-phase AC power. It defines a conductive power transfer method including the digital communication system. It also covers the functional and dimensional requirements for the Electric Vehicle Inlet, Supply Equipment Connector, and mating housings and contacts. Moveable charging equipment such as a service truck with charging facilities are within scope. Charging while moving (or in-route-charging) is not in scope.

Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Enclosed Pin and Socket Connection

2020-01-20
CURRENT
J3105/3_202001
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/3 details the enclosed pin and sleeve connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the main safety and interoperability relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on an enclosed pin and socket design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2020-01-20
CURRENT
J3105_202001
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document. SAE J3105: Main document, including most requirements. ○ SAE J3105/1: Infrastructure-Mounted Cross Rail Connection ○ SAE J3105/2: Vehicle-Mounted Pantograph Connection ○ SAE J3105/3: Enclosed Pin and Socket Connection
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Infrastructure-Mounted Pantograph (Cross-Rail) Connection

2020-01-20
CURRENT
J3105/1_202001
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/1 details the infrastructure-mounted pantograph, or cross-rail connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive ACD based on a cross-rail design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Vehicle-Mounted Pantograph (Bus-Up)

2020-01-20
CURRENT
J3105/2_202001
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/2 details the vehicle-mounted pantograph, or the bus-up connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Plug-in Electric Vehicle (PEV) Charge Rate Reporting

2020-01-06
WIP
J2953/4
This document is intended to provide a clear comparison of the best-case, yet realistic, DC charging capabilities of passenger vehicles and PEV Supply Equipment (EVSE) intended for passenger vehicles. A single common test procedure and metric will be established for both vehicles or EVSEs operating without limitations in best case conditions. This document does not attempt to address issues of PEV-EVSE interactions in real-time variations such as extreme temperatures, variable SoCs, and so on.
Standard

Use Cases for Plug-In Vehicle Communication as a Distributed Energy Resource

2020-01-03
WIP
J2836/3
This SAE Information Report establishes use cases for a Plug-in Electric Vehicle (PEV) communicating with an Energy Management System (EMS) as a Distributed Energy Resource (DER) which must be supported by SAE J2847/3. This document also provides guidance for updates to SAE J2847/2 to allow an inverter in an EVSE to use the PEV battery when operating together as either a DER or as a power source for loads which are not connected in parallel with the utility grid. Beyond these two specific communication objectives, this document is also intended to serve as a broad guide to the topic of reverse power flow.
Standard

Interconnection Requirements for Onboard, Utility-Interactive Inverter Systems

2019-12-24
WIP
J3072
This SAE Standard J3072 establishes interconnection requirements for a utility-interactive inverter system which is integrated into a plug-in electric vehicle (PEV) and connects in parallel with an electric power system (EPS) by way of conductively-coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 Standard for Interconnecting Distributed Resources with Electric Power Systems and IEEE 1547.1 Standard for Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
Standard

Power Quality Test Procedures for Plug-In Electric Vehicle Chargers

2019-08-27
WIP
J2894/2
This recommended practice provides test procedures for evaluating PEV chargers for the parameters established in SAE J2894/1, Power Quality Requirements for Plug-In Electric Vehicle Chargers. In addition, this Recommended Practice provides procedures for evaluating EVSE/charger/battery/vehicle systems in terms of energy efficiency, which is a subset of power quality. This expansion of scope from J2894/1 was requested by the stakeholders, and it provides relevance to the system level analyses that are current in state and federal processes. In accordance, the scope includes the energy storage system and the input and output of that system.

In consideration of evaluation, a system boundary is established. The system boundary defines the tested elements and the measurement points. The system boundary for most of the systems expected to be evaluated under this Recommended Practice is shown in Figure 1.

Standard

Communication for Smart Charging of Plug-in Electric Vehicles Using Smart Energy Profile 2.0

2019-08-20
CURRENT
J2847/1_201908
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836-1 use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 schema and application specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Hybrid and EV First and Second Responder Recommended Practice

2019-07-29
CURRENT
J2990_201907
xEVs involved in incidents present unique hazards associated with the high voltage system (including the battery system). These hazards can be grouped into three categories: chemical, electrical, and thermal. The potential consequences can vary depending on the size, configuration, and specific battery chemistry. Other incidents may arise from secondary events such as garage fires and floods. These types of incidents are also considered in the recommended practice (RP). This RP aims to describe the potential consequences associated with hazards from xEVs and suggest common procedures to help protect emergency responders, tow and/or recovery, storage, repair, and salvage personnel after an incident has occurred with an electrified vehicle. Industry design standards and tools were studied and where appropriate, suggested for responsible organizations to implement. Lithium ion (Li-ion) batteries used for vehicle propulsion power are the assumed battery system of this RP.
Standard

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

2019-06-25
WIP
J2841
The total fuel and energy consumption rates of a Plug-In Hybrid Electric Vehicle (PHEV) vary depending upon the distance driven. For PHEVs, the assumption is that operation starts in battery charge-depleting mode and eventually changes to battery charge-sustaining mode. Total distance between charge events determines how much of the driving is performed in each of the two fundamental modes. An equation describing the portion of driving in each mode is defined. Driving statistics from the National Highway Transportation Survey are used as inputs to the equation to provide an aggregate "Utility Factor" (UF) applied to the charge-depleting mode results.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-26
WIP
J2954
The Standard SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. A standard for wireless power transfer (WPT) based on the charge levels from WPT 1-3 (3.7-11 kW) enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. The SAE Standard J2954 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard. This Standard is intended to be used in stationary applications (charging while vehicle is not in motion); dynamic applications may be considered in the future.
Standard

Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology

2019-04-23
CURRENT
J2954_201904
The Recommended Practice SAE J2954 establishes an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless charging of light-duty electric and plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels 1, 2, and 3, with some variations. A standard for wireless power transfer (WPT) based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. The specification supports home (private) charging and public wireless charging. In the near term, vehicles that are able to be charged wirelessly under Recommended Practice SAE J2954 should also be able to be charged by SAE J1772 plug-in chargers.
Standard

Power Quality Requirements for Plug-In Electric Vehicle Chargers

2019-01-23
CURRENT
J2894/1_201901
The intent of this document is to develop a recommended practice for PEV chargers, whether on-board or off-board the vehicle, that will enable equipment manufacturers, vehicle manufacturers, electric utilities, and others to make reasonable design decisions regarding power quality. The three main purposes are as follows: 1 To identify those parameters of PEV battery charger that must be controlled in order to preserve the quality of the AC service. 2 To identify those characteristics of the AC service that may significantly impact the performance of the charger. 3 To identify values for power quality, susceptibility, and power control parameters which are based on current U.S. and international standards. These values should be technically feasible and cost effective to implement into PEV battery chargers. SAE J2894/2 will describe the test methods for the parameters/requirements in this document.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2018-11-27
WIP
J2847/3
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3TM. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
X