Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Raman Characterization of Anti-Wear Films Formed from Fresh and Aged Engine Oils

2006-04-03
2006-01-1099
Engine oils contain additives that provide wear protection to prolong engine life. In a previous study using direct acting mechanical bucket valve train components, we found that aged oil provided better wear protection and friction reduction under certain circumstances. To understand this effect further, friction and wear performance of fresh and laboratory-aged oils with 0.1% phosphorus was studied with ball-on-flat and cylinder-on-flat rigs. Test durations were chosen according to the electrical contact resistance (ECR) values observed between the contacting surfaces. Anti-wear films were characterized primarily by UV and visible Raman spectroscopy, and results were corroborated by Auger electron and infrared spectroscopies. The greatest compositional differences occurred between films formed by fresh and aged oils. The degree of ECR response or the length of oil aging generally did not affect the type of component observed in the films.
Technical Paper

Oxidation and Antiwear Retention Capability of Low-Phosphorus Engine oils

2005-10-24
2005-01-3822
Future vehicle emission regulations both in the US and Europe will require maintaining catalyst efficiency for longer mileage intervals. In order to achieve this requirement, chemical restrictions are being placed on elements in engine oil that can poison catalysts. Most of phosphorus and a significant amount of sulfur in current engine oils come from zinc dialkyldithiophosphates, ZDDPs, which are a class of cost-effective multifunctional additives providing wear, oxidation and corrosion protection. Reducing ZDDP concentrations raises oxidation and wear concerns. The overall purpose of this research is to look at the antioxidation and antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus and the potential of engine oils formulated without phosphorus. In addition to fresh oils, used oils drained from fleet vehicles were also analyzed and evaluated.
Technical Paper

Antiwear Performance of Low Phosphorus Engine Oils on Tappet Inserts in Motored Sliding Valvetrain Test

2003-10-27
2003-01-3119
The overall purpose of this research is to determine the antiwear capability of low phosphorus engine oils containing 0.05 wt% phosphorus. The antiwear performance of 0.05 wt% phosphorus engine oils was evaluated using a laboratory valvetrain bench test rig coupled with an on-line wear measurement technique and a high frequency reciprocating rig (HFRR). Low phosphorus engine oils were compared with GF-3 engine oils containing 0.1 wt% phosphorus. In addition to fresh oils, long drain used oils from fleet vehicles were also analyzed and investigated. This information is important to develop engine oil formulations to meet the latest government emission and fuel economy requirements. The results indicate that by appropriately selecting and balancing supplemental antiwear and/or antioxidation additives the wear loss due to the reduction of zinc dialkyldithiophosphate (ZDDP) may be compensated or even reduced.
Technical Paper

Laboratory Assessment of the Oxidation and Wear Performance Capabilities of Low Phosphorus Engine Oils

2001-09-24
2001-01-3541
Meeting upcoming stringent emission standards will require that exhaust gas catalyst systems become active very quickly, function at very high efficiencies and maintain those capabilities at high mileages. This means that contamination of the catalysts by engine oil derived poisons must be minimized. Phosphorus compounds, derived from the zinc dialkyldithio-phosphate (ZDTP) additives that provide antiwear and antioxidant activity, are a principal contaminant that can increase catalyst light off times and reduce catalyst efficiency. Therefore, reducing the concentration of, or eliminating, phosphorus in engine oils is desirable. Doing so, however, requires that oils be reformulated to ensure that wear protection will not be compromised and that oxidation stability will be maintained. To address these concerns, laboratory tests for evaluating oil oxidation and wear performance have been developed and used to evaluate developmental low phosphorus oils.
Technical Paper

Sequence VIB Engine Test for Evaluation of Fuel Efficiency of Engine Oils - Part I. Aging Procedure for Determination of Fuel Efficiency Retention

1998-10-19
982623
Development of the Sequence VIB dynamometer engine test procedure for evaluating the fuel efficiency benefits of engine oils has recently been completed. This test was designed as an improvement over its predecessor, the Sequence VIA test. It evaluates fuel economy using a range of boundary/mixed and hydrodynamic lubrication stages selected to better represent a wider range of engines. In addition to determining “fresh oil” fuel economy, the new test determines fuel efficiency retention after a second oil aging stage that corresponds to 6437 - 9674 km (4,000 - 6,000 miles) of pre-certification aging of engine oils in vehicles and is representative of customer use. This paper describes the selection of aging conditions and length.
Technical Paper

Base Oil Effects on Friction Reducing Capabilities of Molybdenum Dialkyldithiocarbamate Containing Engine Oils

1997-10-01
972860
Engine oils formulated using molybdenum dialkyldithiocarbamate, Mo(dtc)2, additives can provide substantial friction reduction under mixed to boundary lubrication conditions. It has been previously shown that the effectiveness of Mo(dtc)2 is significantly affected by the presence of other additives and by additive interaction and depletion processes occurring during use. In this study, ligand exchange reactions in an additive system containing Mo(dtc)2 and zinc dialkyldithiophosphate, Zn(dtp)2, have been investigated during oxidation in hexadecane and various base oils at 160°C. Samples of different composition obtained from these studies were used in investigations of the effects of original additives and ligand exchange products on friction reducing capability at 45 and 105°C.
Technical Paper

Effects of Aging on Frictional Properties of Fuel Efficient Engine Oils

1995-10-01
952532
Obtaining the maximum benefits from advanced fuel efficient engine oils will require that those oils not only provide fuel efficiency when new but also throughout the service interval for the oil. The effects of laboratory and engine aging on the ability of an oil containing a molybdenum dialkyldithiocarbamate (MoDTC) additive to provide reduced friction have been investigated. Results of these studies show that the friction reducing capability of this oil, as measured in a laboratory test, was lost prior to depletion of the MoDTC. Interactions between MoDTC and other additives were found to be important with regard to providing friction reduction. Implications for development of advanced oils that will provide lasting fuel efficiency benefits are discussed.
X