Browse Publications Technical Papers 2020-01-0293
2020-04-14

Achieving Diesel-Like Efficiency in a High Stroke-to-Bore Ratio DISI Engine under Stoichiometric Operation 2020-01-0293

This work explores pathways to achieve diesel-like, high-efficiency combustion with stoichiometric 3-way catalyst compatible spark ignition (SI). A high stroke-to-bore engine design (1.5:1) with cooled exhaust gas recirculation (EGR) and high compression ratio (rc) was used to improve engine efficiency by up to 30% compared with a production turbocharged gasoline direct injection spark ignition engine. To achieve efficiency improvements, engine experiments were coupled with computational fluid dynamics simulations to guide and explain experimental trends between the original engine and the high stroke-to-bore ratio design (1.5:1). The effects of EGR and late intake valve closing (IVC) and fuel characteristics are investigated through their effects on knock mitigation. Direct injection of 91 RON E10 gasoline, 99 RON E0 gasoline, and liquified petroleum gas (i.e., propane/autogas) were evaluated with geometric rc ranging from 13.3:1 to 16.8:1. Engine experiments demonstrated 47% gross thermal efficiency, and 45% net thermal efficiency at stoichiometric engine operation, at up to 17 bar IMEP and 2000 r/min with 16.8:1 rc.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-01-0295

View Details

JOURNAL ARTICLE

EGR Dilution and Fuel Property Effects on High-Efficiency Spark-Ignition Flames

2021-01-0483

View Details

TECHNICAL PAPER

Water Injection to Improve Direct Injection Spark Ignition Engine Efficiency

2019-01-1139

View Details

X