Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Clutch Parameter Effects on Torque and Friction Stability

2011-04-12
2011-01-0722
Approximation formulas are presented for the time response of the film thickness and torque in a wet clutch. The approximation formulas show the effects of various clutch parameters on the film thickness, the hydrodynamic torque and the asperity torque. Clutch parameters affecting the film thickness and torque include friction material characteristics, lubricant properties, the geometry of the clutch plates and the time-dependent apply pressure. The approximation formulas are obtained from heuristic curve fits of previously published and validated models. It is also shown that a positive gradient (dTf/dωslip > 0) of the friction torque, Tf, with respect to slip speed, ωslip, promotes friction stability. This stability gradient is obtained analytically using the approximation formulas so that the effects of the clutch parameters on friction stability are also shown.
Technical Paper

Role of Fuel Decomposition Products on Formation of Sequence IIIG Piston Deposits

2010-10-25
2010-01-2259
Previous research to understand the mechanism for piston deposit formation in the Sequence IIIG engine test has focused on characterizing the piston deposits. These studies concluded that, in addition to lubricant derived materials, Sequence IIIG piston deposits contain a significant amount of fuel-derived carbonaceous material. The presence of fuel degradation by-products in Sequence IIIG deposits shows that blow-by is a significant contributor to deposit formation. However, blow-by can either assist in the degradation of the lubricant or can simply be a source for organic material which can be incorporated into the deposits. Therefore, a series of modified Sequence IIIG engine tests were conducted to better determine the effect of blow-by on deposit formation. In these studies deposit formation on different parts of the piston assembly were examined since different parts of the piston assembly are exposed to different amounts of blow-by.
Technical Paper

Characterization of TEOST Deposits and Comparison to Deposits Formed on Sequence IIIG Pistons

2009-11-02
2009-01-2663
In the next ILSAC passenger car motor oil specification the Sequence IIIG engine test, as well as two versions of the Thermo-Oxidation Engine Oil Simulation Test (TEOST) have been proposed as tests to determine the ability of crankcase oils to control engine deposits. The Sequence IIIG engine test and the TEOST MHT test are designed to assess the ability of lubricants to control piston deposits and the TEOST 33 test is designed to assess the ability of lubricants to control turbocharger deposits. We have previously characterized the chemical composition of Sequence IIIG piston deposits using thermogravimetric, infrared and SEM/EDS analyses. Sequence IIIG piston deposits contain a significant amount of carbonaceous material and the carbonaceous material is more prevalent on sections of the pistons that should encounter higher temperatures. Furthermore, the carbonaceous material appears to be a deposit formed by the Sequence IIIG fuel.
Journal Article

Friction and Film-Formation Properties of Oil-Soluble Inorganic Nanoparticles

2008-10-06
2008-01-2460
Many vehicle and engine test studies have shown that the fuel efficiency of automobiles can be improved by reducing friction between moving parts. Typically, organic friction modifiers such as glycerol monooleate (GMO) or metal containing friction modifiers such as molybdenum dithiocarbamate (MoDTC) have been added to engine oils to reduce boundary friction and improve fuel efficiency. These traditional friction modifiers act by forming either a self-assembled organic film (in the case of GMO) or a Mo-disulfide chemical film (in the case of MoDTC). More recently, the ability of inorganic tungsten disulfide (WS2) nanoparticles to reduce boundary friction has been described. Martin has proposed that WS2 nanoparticles are transported into a contact zone where they are compressed and peel open like an onion to form a film. In this study, oil-soluble inorganic nanoparticles containing cerium (Ce) and zinc (Zn) have been synthesized.
Technical Paper

Characterization of Deposits Formed on Sequence IIIG Pistons

2005-10-24
2005-01-3820
In the latest passenger car motor oil specifications the Sequence IIIG engine test is used to determine the ability of lubricants to control piston deposits. We have analyzed the chemical composition of Sequence IIIG deposits in order to determine the source of the piston deposits and determine if the mechanism for deposit formation in the Sequence IIIG engine test is similar to previously published mechanisms for formation of high temperature engine deposits. These previous mechanisms show that combustion by-products react with lubricant in the piston ring zone. The mixture of combustion by-products and lubricant are oxidized to form deposit precursors which are further oxidized to form deposits. Since the Sequence IIIG engine test uses lead-free fuel it is important to reexamine the nature of piston deposits formed in gasoline engines and in particular in the Sequence IIIG engine test.
Technical Paper

Effect of Friction Material on the Relative Contribution of Thin-Film Friction to Overall Friction in Clutches

2004-10-25
2004-01-3025
In order to prevent shudder in automatic transmissions, friction must decrease as the sliding speed between the friction plates in clutches decreases. Theoretical studies have shown that friction in wet clutches is a combination of boundary friction and the friction due to flow of fluid through the friction materials (thin-film friction). Therefore, these physical properties of oils should control the anti-shudder performance of automatic transmission fluids. Recently, we demonstrated that boundary and thin-film friction contribute to friction measured at low speeds in JASO SAE No.2 and LVFA tests. Two different friction materials are used in these tests and the relative effect of thin-film friction on low speed friction is greater in the JASO SAE No. 2 test than in the JASO LVFA test.
Technical Paper

Fundamentals of Anti-Shudder Durability: Part II - Fluid Effects

2003-10-27
2003-01-3254
Friction plate degradation and/or friction plate glazing has often been related to the loss of friction control in automatic transmissions. However, in JASO SAE No.2 and LVFA tests, friction material glazing has been found to not be a sufficient condition for the loss of anti-shudder performance or a reduction in torque capacity durability. Therefore, changes in automatic transmission fluid properties rather than changes to the friction surfaces would be expected to play a dominant role in controlling anti-shudder performance and torque capacity. Earlier theoretical studies have proposed that friction in wet clutches is a combination of boundary and hydrodynamic friction. Therefore, changes in these properties should control anti-shudder durability and torque capacity. In this paper, we confirm that boundary and thin-film friction contribute to friction measured in JASO SAE No.2 and LVFA tests.
Technical Paper

Investigation of Pitting Mechanism in the FZG Pitting Test

2003-10-27
2003-01-3233
Extended gear fatigue pitting life is an essential performance requirement for today's gear oils in automotive driveline applications. One of the important industrial standard tests used to evaluate fully formulated oil's ability to extend gear pitting fatigue life is the FZG pitting test. To understand the fatigue pitting behavior in these gears we have conducted surface analyses on the FZG gears to determine fatigue modes. We have found that micro-pitting is the major fatigue mode and pitting/spalling is mostly initiated by micro-pitting in the FZG test. To help further understand how pitting and micro-pitting relate to gear oil properties and gear surface morphology, we have also carried out a statistical analysis correlating fatigue pitting life with four major physical parameters: boundary friction coefficient, oil film thickness, oil corrosiveness, and surface roughness of the gear tooth.
Technical Paper

Improved Understanding of Axle Oil Rheology Effects on Torque Transfer Efficiency and Axle Oil Operating Temperature

2003-10-27
2003-01-1972
Effective axle oils must efficiently transfer torque from the drive-train to the wheels, while maintaining low axle oil operating temperatures. The kinematic viscosity and viscosity index of oils can affect both torque transfer efficiencies and operating temperatures. However, the optimal oil rheological properties required to maximize torque efficiency and minimize operating temperature vary with operating conditions. For example, Bala et al found that to maximize torque transfer efficiencies and minimize operating temperatures under low torque and high axle speed conditions, low viscosity fluids are preferred. Under high torque and low axle speed conditions, higher viscosity fluids are preferred. Our current studies show that fluids, which form thicker EHD films and have lower EHD friction have higher torque transfer efficiencies and lower axle oil operating temperatures.
Technical Paper

Fundamentals of Anti-shudder Durability: Part I - Clutch Plate Study

2003-05-19
2003-01-1983
In automatic transmission technology development the degradation of paper friction plates has often been considered a major failure mechanism by which transmissions lose their anti-shudder characteristics. One of the most common degradation processes for paper friction plates is known as glazing. In this study, we focus on the relationship between friction plate glazing and anti-shudder durability in the Japanese Automobile Standards Organization (JASO) low velocity friction apparatus (LVFA) rig test following the procedure M349-98. We also investigate the impact of used friction plates and used oil on torque capacity durability as measured by an SAE No. 2 machine following the JASO procedure M348-95. We find that friction plate glazing has no correlation with anti-shudder durability. A completely glazed plate can have long anti-shudder durability but a barely glazed plate can have short anti-shudder durability.
Technical Paper

Film Formation Properties of Polymers in the Presence of Abrasive Contaminants

2002-10-21
2002-01-2793
Emission requirements for all vehicles have become increasingly more stringent. Diesel engine design changes required to meet emissions requirements result in increased levels of soot in the lubricant. This increased level of soot causes increased wear when oils are not properly formulated. Recent studies have shown that the primary cause of wear in the crossheads of Cummins M-11 and M-11/EGR engines is the abrasive nature of primary soot particles. In addition, it has also been shown that oils, which form films that are thicker than the size of primary soot particles can prevent abrasive wear. Dispersants and dispersant-polymers are known to prevent wear in the presence of soot. The goal of this study is to better understand the role of dispersants and functionalized polymers on the prevention of wear by examining their ability to form films in the presence of abrasive contaminants.
Technical Paper

Low and High Temperature Non-Newtonian Behavior of Automatic Transmission Fluids

2002-05-06
2002-01-1695
Rheological properties of automatic transmission fluids (ATFs) are typically characterized by their kinematic (ASTM D 445) and Brookfield (ASTM D 2983) viscosities. However, ATFs contain polymeric viscosity modifiers, which often result in non-Newtonian fluid behavior as the polymers align and stretch under the shear stresses experienced in automatic transmissions. Therefore, the standard rheological tests, which are normally run under low shear stresses, may not adequately characterize an ATF's flow properties under the operating conditions of the automatic transmission. This study was designed to characterize the rheological properties of ATFs containing different amounts of viscosity modifiers, different base oil types and different levels of permanent shear stability under the shear and temperature conditions which exist in automatic transmissions.
Technical Paper

Low Temperature Rheological Properties of Aged Crankcase Oils

2000-10-16
2000-01-2943
The low-temperature pumpability of engine oil throughout the engine at startup is an important property. Insuring that fresh oils can be pumped at low temperatures has been a requirement of crankcase lubricants for approximately two decades. Extending the assurance of the oil's low temperature pumpability as it ages under engine operation has been the concern of car manufacturers and lubricant marketers for some time. In order to determine the factors influencing the aged oil's low temperature pumpability, we have undertaken a fleet test. We found that as lubricants are aged, excellent low temperature pumping properties can be maintained if lubricants are formulated with viscosity-index improvers incapable of forming polymer networks, base oils with a low tendency to form wax networks, effective pour-point depressants, and if oil drain intervals are not extended beyond the performance limitations of the specific lubricant category.
Technical Paper

Low Temperature Rheology of Engine Lubricants: Investigation of High Used Oil Pumping Viscosity

2000-10-16
2000-01-2944
A taxi field test in 1999 resulted in unusually high used oil MRV TP-1 viscosity in the first 16,000-kilometer drain oil. A subsequent root cause investigation revealed that contamination of the test oil by carry-over of the factory-fill oil followed by oil aging in the vehicle was responsible for the unusual high MRV TP-1 viscosity. Contamination by the factory-fill oil alone cannot account for the high MRV TP-1 viscosity; oil aging in vehicles is an essential co-factor. While the precise mechanism has not been determined, high MRV TP-1 viscosity and yield stress appear to be the consequence of reduction in PPD effectiveness but not PPD degradation. However, the MRV TP-1 viscosity and yield stress of such used oil can be restored to acceptable levels by an optimized PPD system. The study found that used oil MRV TP-1 pumping viscosity and yield stress can be highly dependent on the viscosity index improvers used in the oils involved.
Technical Paper

Molecular Changes to Polymeric Additives Occurring During Fuel Economy Aging Tests

1998-10-19
982507
A Gel Permeation Chromatography-Fourier Transform Infrared (GPC-FTIR) technique is employed to monitor changes in the molecular weight distributions of polymeric oil additives caused by oil aging in vehicle and engine fuel economy tests. Before and after oil aging, the predominant high molecular weight polymers in the oil are the dispersant and viscosity index improver. That is, very few low molecular weight species are oxidized and subsequently polymerized during the fuel economy tests. Molecular changes in the dispersant and viscosity index improver are related to changes in an oil's high temperature high shear viscosity in order to determine their effect on an oil's ability to control fuel economy.
Technical Paper

Comparison of the Physical and Chemical Changes Occurring in Oils During Aging in Vehicle and Engine Fuel Economy Tests

1998-10-19
982504
Oils, which do not contain Molybdenum (Mo)-based friction modifiers, were aged in vehicle and engine fuel economy tests in order to determine if the different aging protocols caused similar changes in the physical and chemical properties of these oils. Vehicle and engine tests were found to cause similar changes in the high temperature high shear (HTHS) viscosities and boundary friction coefficients of oils. We also observed that the extent of oil oxidation, nitration and volatilization occurring in the vehicle tests could be duplicated by aging in the engine tests. The fuel economy performance of aged oils was also measured in engine tests and found to be highly dependent upon the aged oil's HTHS viscosity. However, we observed that an aged oil's boundary friction coefficient, by itself, did not correlate to an aged oil's fuel economy performance in the high temperature fuel economy measurement stages of engine tests.
Technical Paper

Critical Oil Physical Properties that Control the Fuel Economy Performance of General Motors Vehicles

1998-10-19
982503
The effect of critical physical properties of engine oils on fuel economy performance in General Motors (GM) vehicles has been measured. Reductions in an oil's high temperature high shear viscosity, boundary friction coefficient and pressure-viscosity coefficient were found to equally improve fuel economy. These same oil properties affect fuel economy measured in the Sequence VIA engine test. However, fuel economy performance in GM vehicles is more dependent on an oil's boundary friction coefficient and pressure-viscosity coefficient than that measured in the Sequence VIA engine test. New fuel economy measurement conditions have been proposed for the Sequence VIB engine test. Changes in an oil's boundary friction coefficient were found to have the same effect on fuel economy measured under these new measurement conditions as that measured in GM vehicles.
X