Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Journal Article

Obese Occupant Response in Reclined and Upright Seated Postures in Frontal Impacts

2023-06-27
2022-22-0002
The American population is getting heavier and automated vehicles will accommodate unconventional postures. While studies replicating mid-size and upright fore-aft seated occupants are numerous, experiments with post-mortem human subjects (PMHS) with obese and reclined occupants are sparse. The objective of this study was to compare the kinematics of the head-neck, torso and pelvis, and document injuries and injury patterns in frontal impacts. Six PMHS with a mean body mass index of 38.2 ± 5.3 kg/m2 were equally divided between upright and reclined groups (seatback: 23°, 45°), restrained by a three-point integrated belt, positioned on a semi-rigid seat, and exposed to low and moderate velocities (15, 32 km/h). Data included belt loads, spinal accelerations, kinematics, and injuries from x-rays, computed tomography, and necropsy. At 15 km/h speed, no significant difference in the occupant kinematics and evidence of orthopedic failure was observed.
Technical Paper

Responses and Injuries to PMHS in Side-Facing and Oblique Seats in Horizontal Longitudinal Sled Tests per FAA Emergency Landing Conditions

2016-11-07
2016-22-0006
The objective of the present exploratory study is to understand occupant responses in oblique and side-facing seats in the aviation environment, which are increasingly installed in modern aircrafts. Sled tests were conducted using intact Post Mortem Human Surrogates (PMHS) seated in custom seats approximating standard aircraft geometry. End conditions were selected to represent candidate aviation seat and restraint configurations. Three-dimensional head center-of-gravity linear accelerations, head angular velocities, and linear accelerations of the T1, T6, and T12 spinous processes, and sacrum were obtained. Three-dimensional kinematics relative to the seat were obtained from retroreflective targets attached to the head, T1, T6, T12, and sacrum. All specimens sustained spinal injuries, although variations existed by vertebral level.
Technical Paper

Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral ImpactTests Using Chestbands

2015-11-09
2015-22-0001
While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Three-point belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given.
Technical Paper

Oblique Lateral Impact Biofidelity Deflection Corridors from Post Mortem Human Surrogates

2013-11-11
2013-22-0016
The objective of the study was to determine the thorax and abdomen deflection-time corridors in oblique side impacts. Data were analyzed from Post Mortem Human Surrogate (PMHS) sled tests, certain aspects of which were previously published. A modular and scalable anthropometry-specific segmented load-wall system was fixed to the platform of the sled. Region-specific forces were recorded from load cells attached to the load-wall plates. The thorax and abdomen regions were instrumented with chestbands, and deflection contours were obtained. Biomechanical responses were processed using the impulse-momentum normalization method and scaled to the mid-size male mass, 76-kg. The individual effective masses of the thorax and abdomen were used to determine the scale factors in each sled test, thus using the response from each experiment. The maximum deflections and their times of attainments were obtained, and mean and plus minus one standard deviation corridors were derived.
Technical Paper

Thoraco-Abdominal Deflection Responses of Post Mortem Human Surrogates in Side Impacts

2012-10-29
2012-22-0002
The objective of the present study was to determine the thorax and abdomen deflections sustained by post mortem human surrogate (PMHS) in oblique side impact sled tests and compare the responses and injuries with pure lateral tests. Oblique impact tests were conducted using modular and non-modular load-wall designs, with the former capable of accommodating varying anthropometry. Tests were conducted at 6.7 m/s velocity. Deflection responses from chestbands were analyzed from 15 PMHS tests: five each from modular load-wall oblique, non-modular load-wall oblique and non-modular load-wall pure lateral impacts. The thorax and abdomen peak deflections were greater in non-modular load-wall oblique than pure lateral tests. Peak abdomen deflections were statistically significantly different while the upper thorax deflections demonstrated a trend towards significance.
Technical Paper

Region-Specific Deflection Responses of WorldSID and ES2-re Devices in Pure Lateral and Oblique Side Impacts

2011-11-07
2011-22-0013
The objective of this study was to determine region-specific deflection responses of the WorldSID and ES2-re devices under pure lateral and oblique side impact loading. A modular, anthropometry-specific load wall was used. It consisted of the Shoulder, Thorax, Abdomen, superior Pelvis, and inferior Pelvis plates, termed the STAPP load wall design. The two devices were positioned upright on the platform of a bench seat, and sled tests were conducted at 3.4, 6.7, and 7.5 m/s. Two chestbands were used on each dummy at the thoracic and abdominal regions. Internal sensors were also used. Effective peak deflections were obtained from the chestband contours. Based on the preselected lateral-most point/location on the pretest contour, “internal sensor-type” peak deflections were also obtained using chestband contours. In addition, peak deflection data were obtained from internal sensor records.
X