Browse Publications Technical Papers 2011-22-0013
2011-11-07

Region-Specific Deflection Responses of WorldSID and ES2-re Devices in Pure Lateral and Oblique Side Impacts 2011-22-0013

The objective of this study was to determine region-specific deflection responses of the WorldSID and ES2-re devices under pure lateral and oblique side impact loading. A modular, anthropometry-specific load wall was used. It consisted of the Shoulder, Thorax, Abdomen, superior Pelvis, and inferior Pelvis plates, termed the STAPP load wall design. The two devices were positioned upright on the platform of a bench seat, and sled tests were conducted at 3.4, 6.7, and 7.5 m/s. Two chestbands were used on each dummy at the thoracic and abdominal regions. Internal sensors were also used. Effective peak deflections were obtained from the chestband contours. Based on the preselected lateral-most point/location on the pretest contour, “internal sensor-type” peak deflections were also obtained using chestband contours. In addition, peak deflection data were obtained from internal sensor records. In oblique tests, the mean “IR-TRACC-type” peak deflections in the WorldSID device were 40 to 80% of effective peak deflections, whereas the mean “potentiometer-type” peak deflections in the ES2-device were 7 to 50%. The WorldSID device appears to better mimic region-specific responses to oblique loading than the ES2-re device, likely due to the differences in its design of the thoracic and abdominal regions. While the lateral-most point corresponding to the current 1D IR-TRACC location was found to replicate the pure lateral response, it was found to be less than optimal to track oblique loading. Although a laterally positioned sensor provides lower peak deflections in oblique loading, the addition of an angle-measuring sensor should allow modulating the translational metric for this mode. From this perspective, it may be worthwhile to use a 2D IR-TRACC or an optical sensor to verify these findings without chestband measures. Such an analysis has the potential to modify thoracic and abdominal injury criteria to account for obliqueness.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Addressing Run Off Road Safety

2014-01-0554

View Details

TECHNICAL PAPER

Electronic Sensing of Automobile Crashes for Airbag Deployment

910276

View Details

TECHNICAL PAPER

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-01-0257

View Details

X