Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Techno-Economic Analysis of Fixed-Route Autonomous and Electric Shuttles

2021-04-06
2021-01-0061
This paper takes a realistic approach to develop a techno-economic analysis for fixed-route autonomous shuttles. To develop a model for analysis, the current state of technology was used to approximate three timelines for achieving SAE level 5 capabilities: progressive, realistic, and conservative. Within these timelines, there are four different increments for advancements in the technology laid out as follows: SAE Level 0 - human driver, SAE Level 4 - in-vehicle safety operator, SAE Level 4 - remote safety operator, and SAE Level 5 - no safety operator. These increments in the changes of the technology were chosen based on the trends in the industry. Various shuttle models were used based on different rider quantities and drive-train requirements (electric vs gas) in this analysis. This allows for further understanding of how these deployment plans will vary the cost for shuttles operating in high, mid, and low ridership demand environments.
Technical Paper

Using Reinforcement Learning and Simulation to Develop Autonomous Vehicle Control Strategies

2020-04-14
2020-01-0737
While machine learning in autonomous vehicles development has increased significantly in the past few years, the use of reinforcement learning (RL) methods has only recently been applied. Convolutional Neural Networks (CNNs) became common for their powerful object detection and identification and even provided end-to-end control of an autonomous vehicle. However, one of the requirements of a CNN is a large amount of labeled data to inform and train the neural network. While data is becoming more accessible, these networks are still sensitive to the format and collection environment which makes the use of others’ data more difficult. In contrast, RL develops solutions in a simulation environment through trial and error without labeled data. Our research expands upon previous research in RL and Proximal Policy Optimization (PPO) and the application of these algorithms to 1/18th scale cars by expanding the application of this control strategy to a full-sized passenger vehicle.
Technical Paper

Development of an Autonomous Vehicle Control Strategy Using a Single Camera and Deep Neural Networks

2018-04-03
2018-01-0035
Autonomous vehicle development has benefited from sanctioned competitions dating back to the original 2004 DARPA Grand Challenge. Since these competitions, fully autonomous vehicles have become much closer to significant real-world use with the majority of research focused on reliability, safety and cost reduction. Our research details the recent challenges experienced at the 2017 Self Racing Cars event where a team of international Udacity students worked together over a 6 week period, from team selection to race day. The team’s goal was to provide real-time vehicle control of steering, braking, and throttle through an end-to-end deep neural network. Multiple architectures were tested and used including convolutional neural networks (CNN) and recurrent neural networks (RNN). We began our work by modifying a Udacity driving simulator to collect data and develop training models which we implemented and trained on a laptop GPU.
Technical Paper

The Importance of HEV Fuel Economy and Two Research Gaps Preventing Real World Implementation of Optimal Energy Management

2017-01-10
2017-26-0106
Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
X