Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Combustion Development and Efficiency Improvement for Hybrid Engines

2024-04-09
2024-01-2093
In the pursuit of carbon emission reduction, hybridization has emerged as a significant trend in powertrain electrification. As a crucial aspect of hybrid powertrain system development, achieving high brake thermal efficiency (BTE) and a wide operating range with high efficiency are essential for hybrid engines to effectively integrate with the hybrid system. When developing dedicated hybrid engines (DHE), several design considerations come into play. First, in order to make efficient use of available resources and enable engine production on the same assembly line as conventional engines, it is crucial to maintain consistency in key design parameters of the cylinder head and block, thus extending the platform-based design approach. Among the key measures to achieve high BTE, cooled exhaust gas recirculation (EGR) has been extensively explored and proven effective in improving efficiency by mitigating knocking and reducing engine cooling heat loss.
Technical Paper

All New 2.0L Turbo-charged GDI Engine from SAIC Motor

2021-09-21
2021-01-1230
SAIC Motor has developed an all new 2.0 L 4-cylinder turbocharged gasoline direct injection engine to meet the market demand and increasingly stringent requirement of CAFE and tail-pipe emission regulations. A series of advanced technologies have been employed in this engine to achieve high efficiency, high torque and power output, fast response low-end torque performance, refined NVH performance, all at market leading level, and low engine-out emissions. These main technologies include: side mount gasoline direct injection with 35MPa fuel injection system, integrated exhaust manifold, high tumble combustion system, 2-step intake variable valve lift (DVVL) with Miller Cycle, efficient turbo charging with electric wastegate (EWG), light weight and compact structural designs, NVH measures including balancer system with silence gear, friction reduction measures, optimized thermal management, etc.
Technical Paper

Effect of Injection Parameters on Particulate Matter Emission in a Direct Injection Gasoline Engine

2021-04-06
2021-01-0628
PN(Particle Number) emission limits are more stringent for gasoline vehicles in Chinese VI emission standards (6×1011 #/km). A EEPS engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, second injection ratio and second injection end time) on particle diameter distribution and particle number density of emission was Investigated. The experimental result indicates that the quantity of particles decrease with the increase of injection pressure obviously, especially at high load including the 20% reduction of the particle number density. When the engine is at low load, the accumulation mode particle emissions are higher than the nucleation mode particle emissions compared with high load, which present opposite results. The second injection can restrain engine knock at low speed.
Technical Paper

The New 4-Cylinder Turbocharged GDI Engine from SAIC Motor

2020-04-14
2020-01-0836
SAIC Motor Corporation Limited (SAIC Motor) has developed a new 1.5 L 4-cylinder turbocharged gasoline direct injection engine to meet the market demand and increasingly stringent requirement of CAFE and tail-pipe emission regulations. A series of advanced technologies for improving engine fuel economy, engine-out emission, torque and power output specially low end torque performance have been employed, such as: central gasoline direct injection, integrated exhaust manifold, high tumble combustion system, Miller Cycle, cooled external EGR, 35MPa fuel injection system, multi-hole injector with variable hole size design, efficient turbo charging with electric wastegate (EWG), etc. As a result, the engine is able to achieve over 39% brake thermal efficiency (BTE), as well as substantial fuel consumption reduction in vehicle driving cycle. It delivers 275 Nm maximum torque and 127kW rated power, with fast low end torque response.
Technical Paper

Investigations of Smoke Emission, Fuel Dilution and Pre-Ignition in a 2.0L Turbo-Charged GDI Engine

2016-04-05
2016-01-0698
Engine downsizing has become a leading trend for fuel consumption reduction while maintaining the high specific power and torque output. Because of this, Turbo-charged Gasoline Direct Injection (TGDI) technology has been widely applied in passenger vehicles even though a number of technical challenges are presented during the engine development. This paper presents the investigation results of three key issues in the combustion development of a 2.0L TGDI engine at SAIC motor: fuel dilution, smoke emission and low speed stochastic pre-ignition(LSPI). The effect of the injection timing and injection strategy on fuel dilution and smoke emission, and LSPI are the focus of the experimental study.
X