Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Study on Local Stress Variable Strength Design Effect of B-Pillar Structure

2023-04-11
2023-01-0082
In this paper, the principles, advantages and disadvantages of the main technology of variable strength design of automobile B-pillar Based on the finite element simulation technology, the local stress variable strength design effect of Automobile B-pillar structure is simulated, compared and evaluated. The simulation results show that with the same mechanical properties, the overall lightweight degree of B-pillar structure with variable strength design can be reduced by about 8.9%. With the expansion of the strengthening area of variable strength design of parts, the degree of lightweight of parts can be further improved. It can be seen that the local stress variable strength design method provides a new technical option for the lightweight design of automobile parts.
Technical Paper

Compressive and Bending Resistance of the Thin-Walled Hat Section Beam with Strengthened Ridgelines

2021-04-06
2021-01-0293
To overcome some drawbacks of using UHSS (Ultra High Strength Steel) in vehicle weight reduction, like spot weld HAZ (Heat Affected Zone) softening, hard machining and brittleness, a new solution of ultra-high stress strengthening was proposed and applied to the ridgelines of thin-walled structures in this paper. Firstly, stress distribution characteristics, the laws of stress variation and the compressed plate buckling process of the rectangular thin-walled beam under compressive and bending load were analyzed in elastic plastic stage by theory and Finite Element (FE) simulation. Secondly, based on elastic plastic buckling theory of the compressed plate and stress distribution similarity of the buckling process of the thin-walled box structure, three factors influencing the ultimate resistance enhancement of thin-walled hat section beam were found, and the rationality and accuracy of cross section ultimate resistance prediction formulas were also verified by FE simulation.
Technical Paper

Potential Risk Assessment Algorithm in Car Following

2019-04-02
2019-01-1024
In this paper, a potential risk assessment algorithm is proposed. The obvious risk assessment measure is defined as time to collision (TTC), whereas the potential risk measure is defined as the time before the host vehicle has to decelerate to avoid a rear-end collision assuming that the target vehicle brakes, i.e. time margin (TM). The driving behavior of the human driver in the dangerous car following scenario is studied by using the naturalistic driving data collected by video drive record (VDR), which include 78 real dangerous car following dangerous scenarios. A potential risk assessment algorithm was constructed using TM and the dangerous car following scenarios. Firstly, the braking starting time during dangerous car following is identified. Next, the TM at brake starting time of the 78 dangerous car following scenarios is analyzed. In the last, the thresholds of the potential risk levels are achieved.
Technical Paper

Analysis under Vehicle-Pedalcyclist Risk Scenario Based on Comparison between Real Accident and Naturalistic Driving Data

2018-04-03
2018-01-1048
This paper constructs the Accident Crash Scenarios(ACSs) classification system based on the traffic accident data collected by the traffic management department in a Chinses city from 2013 to 2015. The classification system selects four influenced variables on the basis of Critical Driving Scenarios(CDSs) in Naturalistic Driving Data. The proportions of each variable are analyzed, and all ACSs are divided into 48 scenarios. The highest proportion of nine ACSs are extracted from all 10596 ACSs, and the result shows the ACSs involved Car-Pedalcyclist occupy the top four scenarios, and the scenarios involved intersection situations are worth attention. Pedalcyclists include bicyclists, motorcyclists, tri-cyclists and electric bicyclists. Multivariate Logistic Regression(MLR) analysis is then used to study the ACSs involved the type of Car-Pedalcyclist.
Technical Paper

Analysis of Steering Model for Emergency Lane Change Based on the China Naturalistic Driving Data

2017-03-28
2017-01-1399
A driver steering model for emergency lane change based on the China naturalistic driving data is proposed in this paper. The steering characteristic of three phases is analyzed. Using the steering primitive fitting by Gaussian function, the steering behaviors in collision avoidance and lateral movement phases can be described, and the stabilization steering principle of yaw rate null is found. Based on the steering characteristic, the near and far aim point used in steering phases is analyzed. Using the near and far aim point correction model, a driver steering model for emergency lane change is established. The research results show that the driver emergency steering model proposed in this paper performs well when explaining realistic steering behavior, and this model can be used in developing the ADAS system.
Technical Paper

Analysis of Driver Emergency Steering Behavior Based on the China Naturalistic Driving Data

2016-09-14
2016-01-1872
Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
Technical Paper

Driver Brake Parameters Analysis under Risk Scenarios with Pedalcyclist

2016-04-05
2016-01-1451
In China there are many mixed driving roads which cause a lot of safety problems between vehicles and pedalcyclists. Research on driver behavior under risk scenarios with pedalcyclist is relatively few. In this paper driver brake parameters under naturalistic driving are studied and pedalcyclists include bicyclist, tricyclist, electric bicyclist and motorcyclist. Brake reaction time and maximum brake jerk are used to evaluate driver brake reaction speed. Average deceleration is used to evaluate the effect of driver brake operation. Maximum deceleration is used to evaluate driver braking ability. Driver behaviors collected in China are classified and risk scenarios with pedalcyclist are obtained. Driver brake parameters are extracted and statistical characteristics of driver brake parameters are obtained. Influence factors are analyzed with univariate ANOVA and regression analysis.
Technical Paper

Energy Absorption Behavior and Application of Thin-walled Box Structure with Higher Strength in Ridgelines

2016-04-05
2016-01-0398
To overcome some drawbacks of using AHSS (Advanced High Strength Steel) in vehicle weight reduction, like brittleness, spot weld HAZ (Heat Affected Zone) softening and high cost, a new ridgeline strengthening technology was introduced and applied to the thin-walled structure in this paper. The energy absorption mechanism of thin-walled box structure with selective strengthened ridgelines under axial compressing load was discussed in first section. After this, the formulas of mean crushing force and corresponding energy absorption for square tube were theoretically discussed. To demonstrate prediction capabilities of formulas, a set of FE simulations of square tubes were conducted. Simulation results show that energy absorption capacity of square tube under quasi-static axial crushing load is dramatically improved by selectively strengthening their ridgelines.
X