Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

A Study on the Bench Test of Friction-Induced Hot Spots in Disc Brake

2015-09-27
2015-01-2694
During light to moderate braking at high speed, the local high temperature phenomenon can be observed on the brake disc surfaces, known as hot spots. The occurrence of hot spots will lead to negative effects such as brake performance fade, thermal judder and local wear, which seriously affect the performance of vehicle NVH. In this paper, based on the bench test of a ventilated disc brake, the basic characteristics of hot spots is obtained and the evolution process of temperature field and disc deformation is analyzed in detail. In temperature field, hot bands appear first and grow, migrate from inner and outer radius to the middle, with the growing temperature fluctuation and finally hot spots appear in the middle radius of the brake disc. The stable SRO waviness forms much earlier than the temperature fluctuation. In the stop brake studied in this paper, the SRO waviness stabilizes in main 7 order state which is lower than the final hot spot order.
Journal Article

The Influence of Vacuum Booster Design Parameters on Brake Pedal Feel

2014-09-28
2014-01-2499
Brake pedal feel characteristic is determined by the structural and kinetic parameters of the components of the brake system. As the servo power component of the brake system, vacuum booster has a significant influence on the brake pedal feel. In this paper, a brake system model for brake pedal feel which has a detail vacuum booster mathematical description is established in the software MATLAB/Simulink. The structure gaps, spring preload, friction force and reaction disc characteristics of vacuum booster are considered in this model. A brake pedal feel bench test under different input velocity and vacuum pressure is completed in order to validate the prediction of the model.
Journal Article

Prediction of Temperature Field Inside Lithium-Ion Battery Based on Similarity Theory

2014-04-01
2014-01-1841
To accurately and efficiently predict the temperature fields inside a lithium-ion battery is key technology for the enhancement of battery thermal management and the improvement of battery performances. The dimensional analysis method is applied to derive similarity criterions and the similarity coefficients of battery interior temperature fields, based on the governing partial differential equations describing the three dimensional transient temperature field. To verify the correctness of similarity criterions and the similarity coefficients, 3D finite element models of battery temperature field are established with a prototype and scale model, on the assumption that the battery cell has single-layer structure and multi-layers structure separately. The simulation results show that the similarity criterions and the similarity coefficients are correct.
X