Browse Publications Technical Papers 2014-01-1841
2014-04-01

Prediction of Temperature Field Inside Lithium-Ion Battery Based on Similarity Theory 2014-01-1841

To accurately and efficiently predict the temperature fields inside a lithium-ion battery is key technology for the enhancement of battery thermal management and the improvement of battery performances. The dimensional analysis method is applied to derive similarity criterions and the similarity coefficients of battery interior temperature fields, based on the governing partial differential equations describing the three dimensional transient temperature field.
To verify the correctness of similarity criterions and the similarity coefficients, 3D finite element models of battery temperature field are established with a prototype and scale model, on the assumption that the battery cell has single-layer structure and multi-layers structure separately. The simulation results show that the similarity criterions and the similarity coefficients are correct. The calculation efficiency is checked to be much more efficient compared with FEM model based on the original cell structure in aspect of amount of resources occupied.
Then the thermal behavior of the battery cell under different discharge rates is investigated. The results indicate that temperature rise and temperature gradient are both much more significant when battery undergoes high-rate discharges.
Thus the finite element modeling method based on similarity theory can be applied for simulation and analysis of the temperature fields in lithium ion battery.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

A Coupled Lattice Boltzmann-Finite Volume Method for the Thermal Transient Modeling of an Air-Cooled Li-Ion Battery Cell for Electric Vehicles

2019-24-0207

View Details

JOURNAL ARTICLE

Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach

2012-01-0334

View Details

TECHNICAL PAPER

Research on Heat Management Performance of Heat Pipe-Fin Based on Optimal Design

2021-01-0752

View Details

X