Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

High-Speed Imaging of Soot Luminosity and Spectral Analysis of In-Cylinder Pressure Trace during Diesel Knock

2014-04-01
2014-01-1259
The present study focuses on the observation of knock phenomena in a small-bore optical diesel engine. Current understanding is that a drastic increase of pressure during the premixed burn phase of the diesel combustion causes gas cavity resonances, which in turn induce a high frequency pressure ringing. The frequency and severity of this ringing can be easily measured by using a pressure transducer. However, visual information of flames under knocking conditions is limited especially for a small-bore diesel engine. To fill this gap, high-speed imaging of soot luminosity is performed in conjunction with in-cylinder pressure measurement during knocking cycles in an automotive-size optical diesel engine. From the experiments, flames were observed to oscillate against the direction of the swirl flow when the pressure ringing occurred.
Journal Article

Effect of Injection Pressure on Transient Behaviour of Wall-Interacting Jet Flame Base in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2536
Influence of the injection pressure on the temporal evolution of lifted jet flame base upon the bowl wall impingement has been studied in a small-bore optical diesel engine. Previous studies suggest that the jet-wall interaction causes re-entrainment of combustion products into the incoming jet, which shortens the lift-off length during the injection and thereby increasing downstream soot. After the end of injection, the flame base slowly moves downstream as the diminishing jet momentum results in reduced re-entrainment. How the injection pressure impacts this transient behaviour of the flame base is a main focus of the present study. Common-rail pressure was varied from 70 to 160 MPa at a fixed injection mass (10 mg per hole) and timing (7°CA bTDC).
X