Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Effect of Injection Pressure on Transient Behaviour of Wall-Interacting Jet Flame Base in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2536
Influence of the injection pressure on the temporal evolution of lifted jet flame base upon the bowl wall impingement has been studied in a small-bore optical diesel engine. Previous studies suggest that the jet-wall interaction causes re-entrainment of combustion products into the incoming jet, which shortens the lift-off length during the injection and thereby increasing downstream soot. After the end of injection, the flame base slowly moves downstream as the diminishing jet momentum results in reduced re-entrainment. How the injection pressure impacts this transient behaviour of the flame base is a main focus of the present study. Common-rail pressure was varied from 70 to 160 MPa at a fixed injection mass (10 mg per hole) and timing (7°CA bTDC).
Technical Paper

High-Speed Imaging of Soot Luminosity and Spectral Analysis of In-Cylinder Pressure Trace during Diesel Knock

2014-04-01
2014-01-1259
The present study focuses on the observation of knock phenomena in a small-bore optical diesel engine. Current understanding is that a drastic increase of pressure during the premixed burn phase of the diesel combustion causes gas cavity resonances, which in turn induce a high frequency pressure ringing. The frequency and severity of this ringing can be easily measured by using a pressure transducer. However, visual information of flames under knocking conditions is limited especially for a small-bore diesel engine. To fill this gap, high-speed imaging of soot luminosity is performed in conjunction with in-cylinder pressure measurement during knocking cycles in an automotive-size optical diesel engine. From the experiments, flames were observed to oscillate against the direction of the swirl flow when the pressure ringing occurred.
X