Refine Your Search

Topic

Search Results

Author:
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Journal Article

A Note on the Applicability of Thermo-Acoustic Engines for Automotive Waste Heat Recovery

2016-04-05
2016-01-0223
A thermo-acoustic engine is a device converting thermal energy into high amplitude acoustic waves that can be harvested, for example, to obtain electricity. The core of the device is a stack/regenerator along which a temperature gradient is created using one hot and one cold heat exchanger. Correctly designed, the thermal interaction between the working fluid and the regenerator assists in amplifying incident acoustic waves. Previous studies have indicated good efficiency obtained with a system of low geometrical complexity. However, for the practical application of this technique it is vital to understand and identify critical design parameters and operating conditions. This is of special interest in automotive applications where the operating conditions vary significantly over a drive cycle. This works aims at providing a framework for studying the net power generation over a drive cycle.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

Acoustic Analysis of Charge Air Coolers

2007-05-15
2007-01-2208
This paper presents the results from a study of the acoustic properties of charge air coolers for passenger cars. Charge air coolers are used on turbo charged engines to increase the overall performance. The cooling of the charged air results in higher density and thus volumetric efficiency. Important for petrol engines is also that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through charge air coolers. The pressure drop in the narrow cooling tubes results in frequency dependent resistive effects on the transmitted sound that is non negligible. Since the cross dimensions of the connecting tanks, located on each side of the cooling tubes, are big compared to the wave length for engine breathing noise, three dimensional effects can also be of importance.
Technical Paper

Acoustic Modelling and Characterization of Plate Heat Exchangers

2012-06-13
2012-01-1562
There is increased concern about the noise emission from cooling systems. This is mainly due to an increased need for cooling needs due to turbo-charging and EGR systems, which tend to increase the fan power and thereby the noise. An important issue in this context is the behavior of the heat-exchanger and its acoustic transmission and absorption properties. In this paper an acoustic model to evaluate such data for a common type of heat exchanger, the parallel plate type, is presented. The basic configuration is assumed to be a matrix of parallel, narrow channels. The developed model is based on a so called equivalent fluid for an anisotropic medium. It is mainly dependent on the heat exchanger geometry combined with the Kirchhoff model for thermo-viscous wave propagation in narrow tubes. The proposed model can be used to predict the sound transmission and absorption for an entire heat exchanger for incident plane waves.
Technical Paper

Acoustic Simulation of Medium Speed IC-Engine Exhaust Gas After Treatment Devices with Substrate

2014-06-30
2014-01-2057
The after treatment devices (ATD) used in internal combustion engine (IC-engine) exhaust systems are mainly designed with emphasis on emission control, i.e. chemical efficiency, while paying less attention to the acoustic performance. In automotive applications, the duct diameters are so small that studying the acoustic wave propagation only in the plane wave frequency range is usually sufficient. In the case of medium speed IC-engines, used for example in power plants and ships, the three dimensional acoustic phenomena must also be taken into account. The main elements of the medium speed IC-engine ATD are the selective catalytic reducer (SCR) and oxidation catalyst (OC), which are based on a large amount of coated channels, i.e. the substrates. The number and type of the substrates depends not only on the regional environment legislations but also on the engine type.
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Acoustical Study of Micro- Perforated Plates for Vehicle Applications

2009-05-19
2009-01-2037
Micro-perforated plate (MPP) absorbers are perforated plates with holes typically in the sub mm range and perforation ratios around 1%. The values are typical for applications in air at standard temperature and pressure (STP). The underlying acoustic principle is simple, it is to create a surface with a built in damping which effectively absorbs sound waves. To achieve this, the acoustic impedance of a MPP absorber is normally tuned to be of the order of the characteristic wave impedance in the medium (~ 400 Pa*s/m in air at STP). The traditional application for MPP absorbers has been building acoustics often combined with a so called panel absorber, to create an absorption peak at a selected frequency. However, MPP absorbers made of metal could also be used for noise control close to or at the source in many vehicle applications.
Technical Paper

Acoustics of Turbochargers

2007-05-15
2007-01-2205
Noise from turbo-chargers is increasingly becoming an issue. Partly due to improved noise control of other components and partly due to increased specific mass flows. Despite that the turbocharging technique was developed in the first part of the last century the acoustical behavior is still a field where there is a lack of research. In this paper an overview of the existing research is presented including the work done in the EC-project ARTEMIS. Some first results from recently started investigations at the new gas management research centre, KTH CICERO, will also be described. A turbo-unit always consists of a compressor which normally is driven by an exhaust turbine. Both the turbine and the compressor will have an influence on how the low frequency engine pulsations propagate in the intake/exhaust system. This is referred to as the passive acoustic property of the turbo-unit.
Technical Paper

Aeroacoustics of Duct Branches-With Application to Silencers

2011-09-11
2011-24-0218
The inclusion of flow-acoustic interaction effects in linear acoustic multiport models has been studied. It is shown, using a T-junction as illustration example, that as long the acoustic system is linear the required information is included in a scattering matrix obtained by experimental or numerical studies. Assuming small Mach numbers and low frequencies-as in most automotive silencer applications-the scattering matrix for the T-junction can be approximated using quasi-steady models. Models are derived that holds for all possible configurations of grazing and bias flow in the T-junctions. The derived models are then used to predict the performance of a novel silencer concept, where a resonator is formed by acoustically short-circuiting the inlet and outlet ducts of a flow reversal chamber. The agreement between experiments and simulations is excellent, justifying the use of the quasi-steady modeling approach.
Journal Article

Designing Regenerators of Thermoacoustic Engines for Automotive Waste Heat Recovery

2020-04-14
2020-01-0414
Extraction and utilization of automotive waste exhaust heat is an effective way to save fuel and protect the environment. One promising technology for this purpose is the thermoacoustic engine, where thermal energy is converted to mechanical energy in terms of high amplitude oscillations. The core component in a travelling-wave thermoacoustic engine is its regenerator where the process of energy conversion is mainly realized. This paper introduces a strategy for the design of the regenerator for applications in typical light- and heavy-duty vehicles. Starting from 1-D linear thermoacoustic theory, the nonlinear effects (given by the high amplitude oscillations) are modelled as acoustic resistances and introduced into the basic linear equations to estimate the nonlinear dissipations in the regenerator. Then, a few dimensionless parameters are derived by normalizing these thermoacoustic equations.
Technical Paper

Designing Thermoacoustic Engines for Automotive Exhaust Waste Heat Recovery

2021-04-06
2021-01-0209
Thermoacoustic engine has been proven to be a promising technology for automotive exhaust waste heat recovery to save fossil fuel and reduce emission thanks to its ability to convert heat into acoustic energy which, hence, can be harvested in useful electrical energy. In this paper, based on the practical thermodynamic parameters of the automotive exhaust gas, including mass flow rate and temperature, two traveling-wave thermoacoustic engines are designed and optimized for the typical heavy-duty and light-duty vehicles, respectively, to extract and reutilize their exhaust waste heat. Firstly, nonlinear thermoacoustic models for each component of a thermoacoustic engine are established in the frequency domain, by which any potential steady operating point of the engine is available.
Technical Paper

Dissipative Silencers Based on Micro-Perforated Plates

2013-09-08
2013-24-0071
Micro-perforated plates (MPP:s) can be defined as a perforated plate where the hole impedance is dominated by viscous losses. This will always be true for sufficiently low frequencies or small holes. In addition for a standard MPP the perforation ratio is chosen so that the normalized acoustic resistance is between 1-2, which yields optimum damping for incident plane waves. Historically MPP:s have been used as panel absorbers to reduce reflections in rooms and enclosures. More recently the potential for machinery and vehicle applications has come into focus, e.g., dissipative exhaust silencers. Some advantages offered by a MPP solution, when compared to traditional dissipative silencers, are that it can reduce the weight and the problem with fibre breakout. In this paper the work on cylindrical MPP dissipative silencers at KTH is summarized.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
Technical Paper

Experimental Analysis on the ‘Exact’ Cremer Impedance in Rectangular Ducts

2018-06-13
2018-01-1523
Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester’s work is that it simplified the analysis on the effect of flow by only considering high frequencies or the ‘well cut-on’ modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest, with the vehicle intake and exhaust system included. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the ‘exact’ solution of Cremer impedance for circular waveguides, which reveals an appreciable difference between the exact and classic solution in the low frequency range. Consequently, the exact solution can lead to a much higher low-frequency attenuation level.
Technical Paper

Experimental Determination of Sound Transmission in Turbo-Compressors

2009-05-19
2009-01-2045
In this paper experimental procedures to determine the sound transmission through automotive turbo-charger compressors are described. An overview of a unique turbocharger testing facility established at KTH CICERO in Stockholm is given. The facility can be used to measure acoustic two-port data for turbo-compressors. Results from measurements on a passenger car turbo-compressor are presented and the influence of operating conditions on the sound transmission is discussed.
Technical Paper

Experimental Facility for the Complete Determination of Sound Transmission in Turbochargers

2010-06-09
2010-01-1424
In this paper a unique experimental facility designed for a complete determination of the sound transmission in turbochargers is introduced. The facility can be used to characterize the passive acoustic effect for turbocharger compressors and turbines working in realistic operating conditions by extracting the acoustic two-port data. The acoustic pressure transmission loss results for a passenger car turbocharger compressor and turbine measured in up- and downstream directions regarding the mean flow are presented. The data are obtained for various operating points of the turbocharger and the influence of operating conditions on the sound transmission is discussed.
Technical Paper

Flow Noise Generation in a Pipe Bend

2018-06-13
2018-01-1525
Noise generated by low Mach number flow in duct networks is important in many industrial applications. In the automotive industry the two most important are the ventilation duct network and the engine exhaust system. Traditionally, design is made based on rule-of thumb or slightly better by simple semi-empirical scaling laws for flow noise. In many cases, strong curvatures and local deviations from circular cross-sections are created due to outer geometry restrictions. This can result in local relatively high flow velocities and complex flow separation patterns and as a result, rule-of thumb and scaling law methods can become highly inaccurate and uncertain. More advanced techniques based on time domain modelling of the fluid dynamics equations together with acoustic analogies can offer a better understanding of the local noise generation, the propagation and interaction with the rest of the system.
Technical Paper

HVAC Blower: a Steady State RANS Noise Prediction Method

2024-06-12
2024-01-2937
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces.
X