Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Journal Article

Tuning Dampers for Ride and Handling of Production Vehicles

2015-04-14
2015-01-1589
The goal of this paper is to discuss the critical aspects of damper tuning for production vehicles. These aspects include ride and handling performance attributes, damper basics, conflicts in achieving desirable results, tuning philosophies, and the influence of the damper design. The marketplace has become increasingly competitive. Customer preference, cost, mass and regulatory pressures often conflict. Yet each year more vehicles are required to do all these things well. Damper tuning can play a significant role in resolving these conflicts. Although many papers have been written on the theory behind damper design and capabilities, there has been very little written about the techniques of tuning dampers for production vehicles. This paper attempts to discuss the critical aspects of damper tuning for production vehicles in four sections. The first section discusses the performance attributes of ride and handling. The second section provides a basic understanding of dampers.
Technical Paper

Optimization of the Customer Experience for Routine Handling Performance

2015-04-14
2015-01-1588
Rapidly increasing customer, financial, and regulatory pressures are creating clear changes in the calculus of vehicle design for modern automotive OEM's (Original Equipment Manufacturers). Customers continue to demand shorter product lifecycles; the increasingly competitive global market exerts pressure to reduce costs in all stages of development; and environmental regulations drive a continuous need to reduce mass and energy consumption. OEM's must confront these challenges while continuing to satisfy the customer. The foundation to meeting these challenges includes: (1) Continued development of objective metrics to quantify performance; (2) Frontloading vehicle design content and performance synthesis; (3) A precise understanding of the customer and their performance preferences under diverse usage conditions. These combined elements will enable products better optimized amongst competing (and often contradictory) imperatives.
Journal Article

Assessment of the Capability of EPS to Reduce Steering Wheel Pull and Vehicle Misalignment

2015-04-14
2015-01-1505
Vehicle steering wheel pull is a condition experienced by customers where a constant torque at the steering wheel is required to maintain a straight path. Steering wheel pull may be accompanied by the secondary effects of steering wheel angle misalignment and vehicle thrust angle “dog-tracking.” EPS pull compensation is a feature that can automatically compensate vehicle steering wheel pull. This paper examines customer benefits, operating principles, effectiveness, and robustness of EPS pull compensation in vehicles. Vehicle road test data indicate EPS can correct a severe vehicle steering wheel pull. Using fundamental physics equations, an analysis tool is derived to support further investigation of steering wheel angle misalignment and vehicle thrust angle. The final section presents a designed experiment revealing parameters most influencing vehicle robustness to chassis and road characteristics.
Journal Article

Customer Focus in EPS Steering Feel Development

2014-04-01
2014-01-0148
The automotive industry is one of the most competitive enterprises in the world. Customers face an ever-expanding number of entries in each market segment vying for their business. Sales price, brand image, marketing, etc. all play a role in purchase decisions, but the factor distinguishing products that consistently perform in the market place is the ability to satisfy the customer. Steering character plays a critical role in the customer driving experience and can be one of the most heavily debated topics during a new vehicle program. The proliferation of EPS steering systems now allows engineers to calibrate steering feel to almost any desired specification. This raises a key question: What subjective & objective characteristics satisfy customers in a particular market segment?
Technical Paper

The Three Suspension Roll Centers and their Application to Vehicle Dynamics

2014-04-01
2014-01-0136
The automotive industry commonly uses two definitions of the suspension roll center, the Kinematic Roll Center (KRC) - of interest in studying suspension geometry, and the Force-based Roll Center (FRC) - of interest in studying steady-state vehicle dynamics. This paper introduces a third definition, the Dynamic Roll Axis (DRA) - of interest in studying transient vehicle dynamics. The location of each one of these roll centers has a unique application to vehicle design and development. Although the physical meaning of each roll center is significantly different, the generic term “roll center” is often used without proper specification. This can lead to confusion about how roll centers influence vehicle behavior.
Technical Paper

Customer Focus in Ride Development

2013-04-08
2013-01-1355
This paper discusses subjective and objective approaches to quantifying ride performance in three sections: (1) Separates overall ride quality into five components-impact feel, shake, isolation, motion control, and smoothness; (2) Discusses approaches to objectively quantifying ride performance; (3) Provides analytical and test data to illustrate trade-offs in performance between the components of ride. The final section of this paper presents customer clinic data indicating customer preferences for the trade-off balance between ride performance attributes, specifically motion control versus smoothness.
Technical Paper

Use of DFSS Principles to Develop an Objective Method to Assess Transient Vehicle Dynamics

2013-04-08
2013-01-0708
This paper presents subjective and objective methods for evaluating transient vehicle dynamics characteristics in four sections: (1) Definition of transient behavior in terms of four traits-agility, stability, precision, and roll support; (2) Description of subjective evaluation methods; (3) Implementation of Design for Six Sigma principles to the development of a steering robot controlled objective test for transient performance; (4) The final section of this paper uses data from simulation and road tests to demonstrate how chassis design parameters can affect transient handling performance.
X