Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Analyses on Mechanical Properties of the Cylindrical Double-V Micro-Structure

2018-04-03
2018-01-0118
The double-V micro-structures (DVMS) are a type of auxetic materials showing the negative Poisson’s ratio which can contract under compression different from the conventional materials. Due to the unique properties, it can have higher stiffness and better impact resistance with lightweight. In this paper, a cylindrical honeycomb tube based on the double-V unit cell is proposed. Firstly, the nominal Poisson’s ration and Young’s modulus in the longitudinal and circumferential directions are derived analytically. The effect of the geometry parameters of the DVMS tube on the mechanical properties is studied thoroughly. Also, the effect of the width in the radial direction on these mechanical properties is analyzed. Secondly, the finite element (FE) method is utilized to obtain the numerical solutions and verify the accuracy of the analytical solutions. The results show that there is a good agreement between the results obtained by the two methods when the width is smaller enough.
Journal Article

Front Rail Crashworthiness Design for Front Oblique Impact Using a Magic Cube Approach

2013-04-08
2013-01-0651
The front rail, as one main energy absorption component of vehicle front structures, should present steady progressive collapse along its axis and avoid bending collapse during the front oblique impact, but when the angle of loading direction is larger than some critical angle, it will appear bending collapse causing reduced capability of crash energy absorption. This paper is concerned with crashworthiness design of the front rail on a vehicle chassis frame structure considering uncertain crash directions. The objective is to improve the crash direction adaptability of the front rail, without deteriorating the vehicle's crashworthiness performance. Magic Cube (MQ) approach, a systematic design approach, is conducted to analyze the design problem. By applying Space Decomposition of MQ, an equivalent model of the vehicle chassis frame is generated, which simplifies the design problem.
Technical Paper

The Development of Nanoclay-Epoxy Composite for Application in Ballistic Protection*

2009-04-20
2009-01-0920
The objective of this research is to develop protection from high velocity projectile and blast load for commercial passenger automobiles such as VIP cars and the Armored Trucks which collect Cash from Banks and shops. Nano-material reinforced composites offer a good opportunity for developing a high velocity impact and blast protection to the commercial cars and trucks from projectiles and blast loads. These methods can be used for homeland security vehicles also. At first, a modeling, simulation, and design tool for nano-composites was developed to predict, with accepted fidelity, nano-composite behaviors. Using a unit cell model created for nanoclay-epoxy composites, the effect of nanoparticle distribution on the maximum stress developed in epoxy resin was investigated with the Meshfree Particle Method. The ensemble average of mechanical property for nanoclay-epoxy composite was studied.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

Blast Protection Design of a Military Vehicle System Using a Magic Cube Approach

2008-04-14
2008-01-0773
A Magic Cube (MQ) approach for crashworthiness design has been proposed in previous research [1]. The purpose of this paper is to extend the MQ approach to the blast protection design of a military vehicle system. By applying the Space Decompositions and Target Cascading processes of the MQ approach, three subsystem design problems are identified to systematize the blast protection design problem of a military vehicle. These three subsystems, including seat structure, restraint system, and under-body armor structure, are most influential to the overall blast-protective design target. The effects of a driver seat subsystem design and restraint-system subsystem design on system blast protection are investigated, along with a focused study on the under-body blast-protective structure design problem.
Technical Paper

Off-road Vehicle Dynamic Simulation Based on Slip-Shifted On-road Tire Handling Model

2008-04-14
2008-01-0771
In this research, off-road vehicle simulation is performed with tire-soil interaction model. The predictive semi-analytical model, which is originally developed for tire-snow interaction model by Lee [4], is applied as a tire-soil interaction model and is implemented to MSC/ADAMS, commercial multi-body dynamic software. It is applied to simulate the handling maneuver of military vehicle HMMWV. Two cases are simulated with Michigan sandy loam soil property. Each case has two maneuvers, straight-line brake and step steer (J-turn). First, tire-soil interaction model and conventional on-road tire model are simulated on the flat road of the same frictional coefficient. The proposed tire-soil interaction model provided larger force under the same slip. Second, the same maneuvers are performed with real off-road frictional coefficient. The proposed tire-soil model can be validated and the behavior of the off-road vehicle can be identified through two simulation cases.
Technical Paper

Innovative Composite Structure Design for Blast Protection

2007-04-16
2007-01-0483
An advanced design methodology is developed for innovative composite structure concepts which can be used in the Army's future ground vehicle systems to protect vehicle and occupants against various explosives. The multi-level and multi-scenario blast simulation and design system integrates three major technologies: a newly developed landmine-soil-composite interaction model; an advanced design methodology, called Function-Oriented Material Design (FOMD); and a novel patent-pending composite material concept, called BTR (Biomimetic Tendon-Reinforced) material. Example results include numerical simulation of a BTR composite under a blast event. The developed blast simulation and design system will enable the prediction, design, and prototyping of blast-protective composite structures for a wide range of damage scenarios in various blast events.
Technical Paper

A Magic Cube Approach for Crashworthiness Design

2006-04-03
2006-01-0671
Vehicle structure crashworthiness design is one of the most challenging problems in product development and it has been studied for decades. Challenges still remain, which include developing a reliable and systematic approach for general crashworthiness design problems, which can be used to design an optimum vehicle structure in terms of topology, shape, and size, and for both structural layout and material layout. In this paper, an advanced and systematic approach is presented, which is called Magic Cube (MQ) approach for crashworthiness design. The proposed MQ approach consists of three major dimensions: Decomposition, Design Methodology, and General Considerations. The Decomposition dimension is related to the major approaches developed for the crashworthiness design problem, which has three layers: Time (Process) Decomposition, Space Decomposition, and Scale Decomposition.
Technical Paper

Fundamental Studies on Crashworthiness Design with Uncertainties in the System

2005-04-11
2005-01-0613
Previous research [1] using an advanced multi-domain topology optimization technique has shown a great promise for the crashworthiness design using the new technique. In this paper, we try to answer some fundamental questions regarding the crashworthiness design, which include: 1) what are the fundamental crash mechanisms of a general crash process; 2) how the uncertainties in the system will affect the crash behavior of a structure; and 3) what is the proper approach for the crashworthiness design optimization that will have needed effectiveness and efficiency. In this paper, three different kinds of uncertainties, uncertainties in the structural parameters, the modeling processes, and the loading and boundary conditions, will be considered to assess the effects of the uncertainties in the crash process. The possible crash mechanisms are then studied to provide an understanding for the design problem.
Technical Paper

Multi-Domain Multi-Step Topology Optimization for Vehicle Structure Crashworthiness Design

2004-03-08
2004-01-1173
A multi-domain and multi-step topology optimization approach has been developed to address a wide range of structural design problems with manufacturability and other application concerns. The potential applications have been demonstrated in our previous work [1,2]. In this paper, we try to extend this method for vehicle crash design problem. The design process will be explained and examples will be provided to illustrate the potential application of this method for complicated crash design problems.
Technical Paper

Design Kit for Accessory Drives (DKAD): Dynamic Analysis of Serpentine Belt Drives

2003-05-05
2003-01-1661
DKAD is an automated analysis tool for evaluating dynamic characteristics of accessory drives. Rotation response analysis predicts natural frequencies and effects of crankshaft excitation. Lateral response of each belt span shows the effect of pulley run-out and parametric excitation. DKAD systematically allows a user to define a design and its operating conditions and then performs a sequence of analysis to visualize the rotational and lateral responses. It also allows a user to quickly explore and assess alternative designs. Belt layout and associated parameters can be saved in templates for future reference.
Technical Paper

Substructure Design Using a Multi-Domain Multi-Step Topology Optimization Approach

2003-03-03
2003-01-1303
A multi-domain and multi-step topology optimization approach is presented in this paper, which can be used to simplify the architecture/topological structure of an “optimum” structure obtained from the topology optimization process, and thus significantly improves the manufacturability of the final design. Examples will be given to illustrate how this approach can be applied to a realistic engineering design problem for developing lightweight and high-performance structures in next-generation ground vehicles.
Technical Paper

Numerical and Experimental Verification of Optimum Design Obtained from Topology Optimization

2003-03-03
2003-01-1333
The objective of this research is to verify the optimum design obtained from a topology optimization process. The verification is through both numerical analysis and physical test. It will be shown that the optimum topology obtained from an example topology optimization process is independent of the material used and the dimension/size of the structure. This important feature is then proved for more general cases through theoretical analyses, numerical simulations, and physical experiments. The result extends the applicability of the optimum design and simplifies the prototyping and test process thus will result in significant cost saving in building full-size prototypes and performing expensive tests. This work is a combined effort with theoretical, numerical and experimental methods. A multi-domain multi-step topology optimization technique [1] will be utilized to find the optimum structural design.
Technical Paper

Efficient Engine Models Using Recursive Formulation of Multibody Dynamics

2001-04-30
2001-01-1594
Engine models with fully coupled dynamic effects of the engine components can be constructed through the use of commercial multibody dynamics codes, such as ADAMS and DADS. These commercial codes provide a modeling platform for very general mechanical systems and the time and effort required to learn how to use them may preclude their use for some engine designers. In this paper, we review an alternative and specialized modeling platform that functions as a template for engine design. Relative to commercial codes, this engine design template employs a recursive formulation of multibody dynamics, and thus it leads directly to the minimum number of equations of motion describing the dynamic response of the engine by a priori satisfaction of kinematic constraints. This is achieved by employing relative coordinates in lieu of the absolute coordinates adopted in commercial multibody dynamics codes. This engine modeling tool requires only minimal information for the input data.
Technical Paper

Development and Application of a Shape-Topology Optimization System Using a Homogenization Method

1994-03-01
940892
The shape and topology optimization method using a homogenization method is a powerful design tool because it can treat topological changes of a design domain. This method was originally developed in 1988 [1] and have been studied by many researchers. However, their scope of application in real vehicle design works has been limited where a design domain and boundary conditions are very complicated. The authors have developed a powerful optimization system by adopting a general purpose finite element analysis code. A method for treating vibration problems is also discussed. A new objective function corresponding to a multi-eigenvalue optimization problem is suggested. An improved optimization algorithm is then applied to solve the problem. Applications of the optimization system to design the body and the parts of a solar car are presented.
Technical Paper

Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods

1991-02-01
910208
Since interior noise has a strong effect on vehicle salability, it is particularly important to be able to estimate noise levels accurately by means of simulation at the design stage. The use of sensitivity analysis makes it easy to determine how the analytical model should be modified or the structure optimized for the purpose of reducting vibration and noise of the structural-acoustic systems. The present work focused on a structural-acoustic coupling problem. As the coefficient matrices of a coupled structural-acoustic system are not symmetrical, the conventional orthogonality conditions obtained in structural dynamics generally do not hold true for the coupled system. To overcome this problem, the orthogonality and normalization conditions of a coupled system were derived by us. In this paper, our sensitivity analysis methods are applied to an interior noise problem of a cabin model.
X