Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Journal Article

Reliability Modeling Approach and Hydraulic Actuators Designed Hinge-Moment Capability

2013-09-17
2013-01-2232
The hydraulic actuators are used to power flight control surfaces of the aircraft and to ensure surface movement. A system of two or three actuators is usually designed depending on the surface and intuitively these actuators are considered as a redundant architecture from a reliability and functionality point of view. The proper reliability modeling of the system of actuators must consider the system's functionality and design constraints for the remaining available actuator hinge-moment in the event of a partial or total actuator failure. As a result, this will affect the reliability assessment of that design. Furthermore, this system of actuators is also designed to provide a second function involving an assurance of the surface stiffness and damping. Generally, this second function does not require necessarily the same number of available actuators in order to be fully provided.
Technical Paper

Integrated Reliability and Safety Education Program

2013-09-17
2013-01-2121
The safe operation of technical systems is a mandatory basic requirement for the entire industry. However, there are specific industries where the safety of operation is critical and is considered as a required characteristic. These types of industries include the aerospace, military, civil aviation, nuclear power, as well as chemical and automotive industries. Safety is everyone's responsibility but engineering plays the most important role in the course of achieving a safe product operation. There are two specific phases of the product life cycle where the safety characteristics should be addressed by engineering activities: the design and development and operation phases. Modern engineering education is oriented to provide future engineers with a sufficient background to be able to Conceive-Design-Implement-Operate.
Journal Article

Probability Assessment of the Fuel Tank Structural Feature Failures

2011-10-18
2011-01-2518
The paper provides an approach to establish compliance with current regulatory standards applicable to lightning protection of the fuel tank structure for Non-Fault Tolerant Feature Failures (NFTFF) through a numerical probability assessment. The proposed procedure is using the criteria defined in the FAA Policy Guidance for fuel tank structural lightning protection and is aligned with the regulatory path described as petitioning for an exemption. Failure modes of structural components for which fault tolerance has been shown to be impractical need to be addressed and the overall likelihood of fuel vapour ignition due to these failure modes must be shown to be extremely improbable. In order to accomplish this, the quantitative assessment of the overall probability of fuel vapour ignition is performed, along with all relevant data to support the probabilities determined for the purpose of this analysis.
Journal Article

Integrated Safety Management System

2009-11-10
2009-01-3171
The Safety Management System requires a structured Risk Management Process to be effective. In the technical fields where numerous potentially catastrophic risks exist, processes and procedures need to account not only for the hardware random failures but also of human errors. The technology has progressed to the point where the predominant safety risks are not so much the machine failures but that of the human interaction. Accidents are rarely the result of a single cause but of a number of latent contributing factors that when combined result in the accident. In the Aerospace industry, the operational risk to the fleet is assessed by the manufacturer and the operator independently and is used in safety and/or regulatory decision-making.
Technical Paper

Methodology for the Common Mode Analysis

2007-09-17
2007-01-3799
The assumption usually made in the safety analysis of most systems is that the failure of any one component is independent of the failure of any other. If this assumption is not valid due to the system design and implementation, the estimated Fault Tree Analysis (FTA) event probabilities will be more optimistic than what is found in practice. One of the most important modes of failure and one, which can severely degrade the actual safety, is a common mode failure. This type of failure involves the simultaneous outage of two or more components due to a common cause. Common Mode Analysis (CMA) provides evidence that the failures assumed to be independent are truly independent. In reality, this analysis is extremely complex due to the large number of common mode failures that may be related to the different common mode types such as design, operation, manufacturing, installation and others.
Technical Paper

Maintenance Action Based on the Time Dependent Failure Rate for Safety–Critical Components

2003-09-08
2003-01-2984
The aircraft components' lifetime is a key decision–making metric for the performance of safety–critical items. The piece–part degradation and age–related changes are critical from the perspective of design and continued airworthiness. The most obvious issue during design development is to establish the need for planned replacement for components that are known to have a limited life. During investigation of an airworthiness issue, it is necessary to determine if the anomaly is time–dependent. If it is, then the anticipated failure probability as a function of time must be estimated such that a decision regarding corrective action can be made. For both cases, an analysis must be performed to determine if and when planned replacement is necessary. Because unanticipated retrofits are costly and difficult, credible and accurate lifetime prediction is essential.
X