Refine Your Search

Search Results

Author:
Technical Paper

Automotive Engineering Applications of Multiphysics Simulation

1999-03-01
1999-01-1022
This article describes the application of multiphysics simulation in the automotive industry. Multiphysics simulation uses a single computational framework for modeling multiple interacting physical phenomena. Within the multiphysics framework, the finite element treatment of fluid flow is based on the Galerkin-Least-Squares (GLS) method, while the arbitrary-Lagrangian-Eulerian (ALE) method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Automatically generated tetrahedral grids are used to ease and expedite the analysis process. This multiphysics architecture lends itself naturally to high-performance parallel computing. Several applications are presented which demonstrate the utility and accuracy of this approach in automotive component design.
X