Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Common Mesh Approach for Automotive Vehicle CAE Analysis

2017-03-28
2017-01-0375
Over the past decades, Computer Aided Engineering (CAE) based assessment of vehicle durability, NVH (Noise, Vibration and Harshness) and crash performance has become very essential in vehicle development and verification process. CAE activity is often organized as different groups based on the specific attributes (durability, NVH and crash). Main reasons for this are the expertise required and the difference in the finite element software technologies (explicit vs implicit) used to perform and interpret various CAE analyses in each of the attributes. This leads to individual attribute team creating its own model of the vehicle and there is not much exchange of the CAE models between the attribute teams. Different model requirements for each attribute make model sharing challenging. However, CAE analyses for all attributes start with common CAD and follow the same sub-process in vehicle development cycle.
Technical Paper

Correlation of Explicit Finite Element Road Load Calculations for Vehicle Durability Simulations

2006-03-01
2006-01-1980
Durability of automotive structures is a primary engineering consideration that is evaluated during a vehicle's design and development. In addition, it is a basic expectation of consumers, who demand ever-increasing levels of quality and dependability. Automakers have developed corporate requirements for vehicle system durability which must be met before a products is delivered to the customer. To provide early predictions of vehicle durability, prior to the construction and testing of prototypes, it is necessary to predict the forces generated in the vehicle structure due to road inputs. This paper describes an application of the “virtual proving ground” approach for vehicle durability load prediction for a vehicle on proving ground road surfaces. Correlation of the results of such a series of simulations will be described, and the modeling and simulation requirements to provide accurate simulations will be presented.
Technical Paper

A New FEA Method for the Evaluation of a Body Joint

2001-03-05
2001-01-0758
A finite element analysis method has been developed to assess the design of an automobile body joint. The concept of the coefficient of joint stiffness and the force distribution ratio are proposed accordingly. The coefficient of joint stiffness reveals whether a joint is stiff enough compared to its joining components. In addition, these parameters can be used to estimate the potential and the effectiveness for any further improvement of the joint design. The modeling and analysis of the proposed process are robust. The coefficient of joint stiffness could be further developed to serve as the joint design target.
Technical Paper

Finite Element Prediction of Backlite Molding Squeak Noise

1997-02-24
970584
The backlite molding squeak noise is caused by the stick-slip type of friction between the window molding and the body panel. To predict if the molding would squeak a finite element analysis technique which uses the nonlinear explicit code LS-DYNA3D has been developed. The three dimensional finite element simulation technique is based on the threshold displacement velocity spectrum and the relative movement of the window glass with respect to the body panel. Comparisons between FEA analysis and tests are also presented in this paper.
X