Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of a Lean Homogeneous Combustion Engine System with a Fuel Reformer Cylinder

2019-12-19
2019-01-2177
The Dual-Fuel (DF) combustion is a promising technology for efficient, low NOx and low exhaust particulate matter (PM) engine operation. To achieve equivalent performance to a DF engine with only the use of conventional liquid fuel, this study proposes the implementation of an on-board fuel reformation process by piston compression. For concept verification, DF combustion tests with representative reformed gas components were conducted. Based on the results, the controllability of the reformed gas composition by variations in the operating conditions of the reformer cylinder were discussed.
Journal Article

Chemical Reaction Processes of Fuel Reformation by Diesel Engine Piston Compression of Rich Homogeneous Air-Fuel Mixture

2017-11-15
2017-32-0120
To extend the operational range of premixed diesel combustion, fuel reformation by piston induced compression of rich homogeneous air-fuel mixtures was conducted in this study. Reformed gas compositions and chemical processes were first simulated with the chemistry dynamics simulation, CHEMKIN Pro, by changing the intake oxygen content, intake air temperature, and compression ratio. A single cylinder diesel engine was utilized to verify the simulation results. With the simulation and experiments, the characteristics of the reformed gas with respect to the reformer cylinder operating condition were obtained. Further, the thermal decomposition and partial oxidation reaction mechanisms of the fuel in extremely low oxygen concentrations were obtained with the characteristics of the gas production at the various reaction temperatures.
Technical Paper

Evaluation of Homogeneous Charge Compression Ignition at High Engine Speeds using a Super Rapid Compression Machine

2008-10-06
2008-01-2403
We had improved RCM and developed a Super Rapid Compression Machine (SRCM) that realizes an extremely rapid compression compared with the conventional RCM. In this study, the performance of the developed SRCM was evaluated. The SRCM was used to investigate on the effects of equivalence ratio on HCCI of n-heptane and iso-octane fuel/air mixture. Experimental results for ignition delay time, τ, and combustion time, t, were obtained from the cylinder pressure histories. The HCCI at high engine speeds was clarified by Optical observation using a high speed camera. As a result, the ignition delay time and combustion time are found to saturate above equivalence ratio of 0.6 at constant compression ratio. In the HCCI combustion in high compression ratio case, shock wave occurs from the core region of the roll-up vortex cause by piston motion. The HCCI combustion has many peaks over a wide range of frequency.
X