Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Shallow Water Modeling Method for Simulating Squish Movement in Diesel Engines

1996-05-01
961128
In this paper, the application of Shallow Water Modeling (SWM) method to simulate the compressible viscous plane flow for studying squish movement in combustion chambers of diesel engines is reported. The principle and analogue criteria of this method are discussed and derived. Using this method combined with visualization technique, the flow patterns were obtained and compared with those obtained by other methods. T1te results show that the SWM method is adequate and favorable for such investigation.
Technical Paper

LDA Analysis of High Injection Pressure Diesel Fuel Spray and Entrainment Air Flow

1994-10-01
941951
Droplet velocities in a diesel fuel spray before and after impinging on a wall as well as air movement around the spray are measured at room temperature and pressure. The range of fuel injection pressure is from 101 MPa to 139 MPa. The diagnostic equipment is a Laser Doppler Velocimetry with Burst Spectrum Analyzer (LDV-BSA).The results show that the droplet velocities of such a high pressure diesel fuel spray spread in a wide range (about 0-250m/s), so it is necessary to use the ensemble average for describing the velocity variation with time and space. After injection, the velocity reaches its peak value rapidly then attenuates gradually. When the spray impinges on the wall, the average velocity of the rebounded droplets is obviously reduced and the rebounded angle of most droplets is smaller than 30 degree when the incident angle is 70 degree. In the near field zone, the air entrainment in spray jet appears to be lower than that in gaseous one.
Technical Paper

Number-Based Droplet Velocity Distribution in High Pressure Diesel Fuel Sprays

1994-09-01
941689
Using a Laser Doppler Velocimetry with Burst Spectrum Analyzer (LDV-BSA), droplet velocities of a diesel fuel spray under a pressure higher than 100 MPa were measured at different points within the spray profile. Results show that although the mean velocity distribution at the sampling plane is rather uniform, the number-based droplet velocity distributions of two sampling points at the same plane are different. The conclusions agree with theoretical predictions through maximum entropy principle qualitatively.
X