Refine Your Search

Search Results

Author:
Viewing 1 to 11 of 11
Technical Paper

A Numerical Simulation of Turbulent Mixing in Transient Spray by LES (Comparison between Numerical and Experimental Results of Transient Particle Laden Jets)

2004-06-08
2004-01-2014
The purpose of this study is to investigate the turbulent mixing in a diesel spray by large eddy simulation (LES). As the first step for the numerical simulation of diesel spray by LES, the LES of transient circular gas jets and particle laden jets were conducted. The simulation of transient circular jets in cylindrical coordinates has numerical instability near the central axis. To reduce the instability of calculation, azimuthal velocity around the central axis is calculated by the linear interpolation and filter width around the axis is modified to the radial or axial grid scale level. A transient circular gas jet was calculated by the modified code and the computational results were compared with experimental results with a Reynolds number of about 13000. The computational results of mean velocity and turbulent intensity agreed with experimental results for z/D>10. Predicted tip penetration of the jet also agreed to experimental data.
Technical Paper

Measurement of Excitation-Emission Matrix of Shock-heated PAHs using a Multi-wavelength Laser Source

2003-05-19
2003-01-1785
Measurements of Excitation-Emission Matrix (EEM) of shock-heated vapors of polycyclic aromatic hydrocarbons (PAHs) at high temperature (750-1500K) and high pressure (0.3-1.3MPa) conditions were conducted using a multi-wavelength excitation laser in order to demonstrate the potential of the single-measurement EEM fluorometry for investigation of soot precursors. Argon-diluted vapors of naphthalene and pyrene, as PAH model compounds, were heated in an optically accessible shock tube. The PAH vapors were excited by a coherent multi-wavelength “rainbow” laser light generated by converting the 4th harmonic (266nm) of a pulsed Nd:YAG laser using a Raman cell frequency converter filled with high-pressure (2MPa) methane-hydrogen mixture.
Technical Paper

2-D Imaging of Soot Formation Process in a Transient Spray Flame by Laser-induced Fluorescence and Incandescence Techniques

2002-10-21
2002-01-2669
In order to investigate the soot formation process in a diesel spray flame, simultaneous imaging of soot precursor and soot particles in a transient spray flame achieved in a rapid compression machine was conducted by laser-induced fluorescence (LIF) and by laser-induced incandescence (LII) techniques. The 3rd harmonic (355nm) and the fundamental (1064nm) laser pulses from an Nd:YAG laser, between which a delay of 44ns was imposed by 13.3m of optical path difference, were used to excite LIF from soot precursor and LII from soot particles in the spray flame. The LIF and the LII were separately imaged by two image-intensified CCD cameras with identical detection wavelength of 400nm and bandwidth of 80nm. The LIF from soot precursor was mainly located in the central region of the spray flame between 40 and 55mm (270 to 370 times nozzle orifice diameter d0) from the nozzle orifice. The LII from soot particles was observed to surround the soot precursor LIF region and to extend downstream.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

1996-05-01
961125
Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

Effects of Combustion Chamber Insulation on the Heat Rejection and Thermal Efficiency of Diesel Engines

1992-02-01
920543
Experiments were conducted with 4-cylinder and single-cylinder direct injection diesel engines to examine the effects of combustion chamber insulation on heat rejection and thermal efficiency. The combustion chamber was insulated by using a silicon nitride piston cavity that was shrink-fitted into a titanium alloy crown. The effect of insulation on heat rejection was examined on the basis of heat release calculations made from cylinder pressure time histories. High-speed photography was used to investigate combustion phenomena. The results showed that heat rejection was influenced by the combustion chamber geometry and swirl ratio and that it was reduced by insulating the combustion chamber. However, because combustion deteriorated, it was not possible to obtain an improvement in thermal efficiency equivalent to the reduction in heat rejection.
Technical Paper

Sources of Hydrocarbon Emissions from a Small Direct Injection Diesel Engine

1987-09-01
871613
The purpose of this paper is to clarify the mechanisms of unburnt hydrocarbon (HC) emissions from a small direct - injection (DI) diesel engine. HC emission levels of small DI diesel engines are considerably higher than those of corresponding indirect - injection (IDI) diesel engines, even when sacless injection nozzles that are effective in reducing HC emissions are installed on them. In this study, analytical engine tests were performed to evaluate the relative significance of various potential sources of HC emissions from a small DI diesel engine equipped with sacless type injectors.
Technical Paper

Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

1981-02-01
810183
A new technique was proposed for measuring instantaneous distributions of flame temperature and KL factor of luminous flames. Here the principle of the two-color method was used to calculate flame temperature and KL factor from the two-color densities of a film image taken on a nega-color film. We applied this technique to the high speed nega-color photographs of flames in a D. I. diesel engine operated with varying swirl ratios, and discussed the measured results of instantaneous distributions of flame temperature and KL factors.
Technical Paper

A Study on the Application of the Two–Color Method to the Measurement of Flame Temperature and Soot Concentration in Diesel Engines

1980-09-01
800970
Flame temperature and KL factor in a DI diesel engine are measured optically by the two-color method. Some differences are observed between the measure values at visible and infrared wavelengths. These differences are caused by: (1) effect of change of index α in time at infrared wavelength during combustion period; (2) effect of distributions of temperature and soot concentration along optical path; and (3) effect of reflection at the walls. The optical characteristics and some other problems on the instrumentation of the two-color method at both wavelengths are also discussed.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
Technical Paper

The Effects of Some Engine Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine

1980-02-01
800253
The rate of air entrainment into the flame and the rate of heat release are thermodynamically calculated in a DI diesel engine: A two-zone model is proposed which uses as input data three measured values of cylinder pressure, flame temperature, and injection rate. The correlations between both rates under various conditions make it clear that the combustion during early and main periods of diffusion combustion is mainly controlled by air entrainment into the flame. The effects of injection pressure, piston configuration, and swirl intensity on the air entrainment are also studied. And the extent of mixing in the flame is evaluated by the equivalence ratio in the flame which is also obtained by the same model. The trends of exhausted NO and soot concentrations well correlate with the equivalence ratios in the flame and measured flame temperatures under all conditions studied.
Technical Paper

A Study on the Time and Space Resolved Measurement of Flame Temperature and Soot Concentration in a D. I. Diesel Engine by the Two-Color Method

1979-02-01
790491
The two-color method regarding the visible wavelength radiation from soot particles in flames was closely studied in order to establish it as a measuring technique of the flame temperature and soot concentration in diesel engines. The accuracy of the temperature calibration of the measuring equipment was assured by a newly developed high temperature black body furnace and a standard tungsten lamp. The emissivity of diesel flames, which is the most important value in this method, was investigated through both the spectroscopic analysis of soot sampled from a diesel flame and the comparative measurements between the two-color method and the emission-absorption method. The examined two-color method was applied to a direct injection diesel engine. The time and space resolved values of temperature and soot concentration were obtained for the first time.
X