Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Investigations of the impact of 10% ethanol blended fuels on performances of sold gasoline vehicles in the Japanese market already on the road in Japan

2011-08-30
2011-01-1987
The study of 10% ethanol blended gasoline (E10 gasoline) utilization has been conducted in the Japan Auto-Oil Program (JATOP). In order to clarify the impact of E10 gasoline on vehicle performances, exhaust emissions, evaporative emissions, driveability and material compatibility have been investigated by using domestic gasoline vehicles including mini motor vehicles which are particular to Japan. The test results reveal that E10 gasoline has no impact on exhaust emissions, engine startup time and acceleration period under the hot start condition, but a slight deterioration is observed in some test cases under the cold start condition using E10 gasolines with 50% distillation temperature (T50) level set to the upper limit of Japanese Industrial Standards (JIS) K 2202. Regarding evaporative emissions, the tested vehicles shows no remarkable increase in the hot soak loss (HSL), diurnal breathing loss (DBL) and running loss (RL) testing with E10 gasolines.
Technical Paper

Effects of RME30 on Exhaust Emissions and Combustion in a Diesel Engine

2008-10-06
2008-01-2499
Considering the popularity of biodiesel fuels for diesel vehicles, the impacts of rapeseed oil methyl ester (RME), which is the most utilized biodiesel fuel in Europe, on tailpipe emissions from a diesel passenger car was investigated. In this study, 30% RME blended diesel fuel (RME30) was used and the comparison of tailpipe emissions between RME30 and a reference diesel fuel was conducted using a test vehicle with the latest engine and aftertreatment system. The results of the investigation reveal that RME30 generates about the same amount of NOx in tailpipe emissions as diesel fuel, and less HC, CO, and PM. These phenomena occurred in spite of attaching catalysts to the test vehicle, and therefore suggesting that the NOx conversion efficiency of the catalysts for RME30 is equal to that for diesel fuel. The injection rate for RME30 was the same as that for diesel fuel.
Technical Paper

Feasibility Study of Ethanol Applications to A Direct Injection Gasoline Engine

2007-07-23
2007-01-2037
Feasibility studies concerning ethanol utilization in direct injection gasoline engines were conducted in order to clarify the effects of ethanol on engine performance, exhaust emissions and injector deposit formation. The investigation results indicate that E100 (100% ethanol fuel) can improve full load engine performance around whole engine speed range in a high compression ratio engine (ε=13:1), compared to that of a base compression ratio engine (ε=11.5:1) operated on a premium gasoline. This was caused by the volumetric efficiency (ηv) improvement and engine knock suppression in the high compression ratio engine. On the other hand, HC emissions remarkably increased under lower engine speeds at a full load condition. This phenomenon suggests that poor combustion occurred due to insufficient mixing of air and E100 fuel under these conditions, in which the amount of ethanol injected was too large and fluidity in the cylinder was weak.
Technical Paper

Effects of Cetane Number and Distillation Characteristics of Paraffinic Diesel Fuels on PM Emission from a DI Diesel Engine

2004-10-25
2004-01-2960
Fischer-Tropsch Diesel (FTD) fuel is expected to be a promising clean diesel fuel in the future because of its characteristics of zero sulfur, zero aromatics and a high cetane number. However, the optimum fuel properties for diesel engines have not been realized. In this study, the effects of cetane number and distillation characteristics on engine-out PM emissions from a conventional direct injection diesel engine were investigated by using paraffinic fuels which were made to simulate FTD fuel. From the results of the vehicle exhaust emissions test and engine dynamometer test, it was found that the narrow distillation characteristics (which eliminates heavy hydrocarbon fraction) could reduce the soluble organic fraction (SOF) in PM emissions, and the excess high cetane number characteristic promoted the formation of insoluble organic fraction (ISOF).
Technical Paper

Effects of Fuel Properties on Premixed Charge Compression Ignition Combustion in a Direct Injection Diesel Engine

2003-05-19
2003-01-1815
Effects of fuel distillation characteristics and cetane number on premixed charge compression ignition (PCCI) combustion were investigated for the purpose of reducing NOx and PM emissions from a direct injection diesel engine. The test engine had a hole type injection nozzle for conventional diesel combustion at high load operation. A low compression ratio and cooled EGR were applied to the test engine in order to reduce the compression temperature for avoiding pre-ignition. The investigation results show that, in the case of ignition control by EGR, a light fuel with lower distillation characteristics had an advantage of reducing smoke at higher loads. This means that high volatility fuel is effective in promoting lean mixture formation of fuel and air during the ignition delay. Moreover, lowering the cetane number was effective in reducing NOx emissions by suppression of combustion temperature.
Technical Paper

Effect of Sulfur-free and Aromatics-free Diesel Fuel on Vehicle Exhaust Emissions using Simultaneous PM and NOx Reduction System

2003-05-19
2003-01-1865
A new diesel after-treatment system, Diesel Particulate and NOx Reduction System (DPNR), is being developed for reducing PM and NOx emissions. We examined the effects of sulfur content in lubricants on exhaust NOx emission from DPNR catalyst, and examined the PM reduction ability using sulfur-free and aromatics-free fuel. After vehicle durability testing of 40,000 km without forced regeneration of PM and sulfur poisoning on DPNR catalyst, deterioration of DPNR was lower than using higher sulfur contents in fuel and oil. In addition to decreasing fuel sulfur, decreasing oil sulfur was also effective to maintain high NOx conversion efficiency. Although the catalyst was poisoned by sulfur in the lubricants, the influence of oil sulfur poisoning on the catalyst was lower than fuel sulfur poisoning. On the other hand, engine out PM emissions decreased by 70 % because of aromatics-free fuel. The pressure drop of DPNR did not increase during the 40,000 km vehicle durability test.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 2: Effect of Branched and Ring Structures of Paraffins on Benzene and Soot Formation

1998-10-19
982495
The effect of the chemical reactivity of diesel fuel on PM formation was investigated using a flow reactor and a shock tube. Reaction products from the flow-reactor pyrolysis of the three diesel fuels used for the engine tests in Part 1(1) (“Base”, “Improved” and Swedish “Class-1”) were analyzed by gas chromatography. At 850C, Swedish “Class-1” fuel was found to produce the most PM precursors such as benzene and toluene among the three fuels, even though it contains very low amounts of aromatics. The chemical analyses described in Part 1 revealed that “Class-1” contains a large amount of branched and cyclic structures in the saturated hydrocarbon portion of the fuel. These results suggest that the presence of such branched and ring structures can increase exhaust PM emissions.
Technical Paper

Effect of Hydrocarbon Molecular Structure on Diesel Exhaust Emissions Part 1: Comparison of Combustion and Exhaust Emission Characteristics among Representative Diesel Fuels

1998-10-19
982494
Combustion and exhaust emission characteristics were compared among three representative diesel fuels called “Base (corresponding to a Japanese market fuel)”, “Improved” and Swedish “Class-1” using both a modern small and an optically accessible single-cylinder DI diesel engines. In these tests, the relative amount of PM collected in the exhaust was “Base” >“Class-1” >“Improved” at almost all of the operating conditions. This means that “Class-1” generated more PM than “Improved”, even though “Class-1” has significantly lower distillation temperatures, aromatic content, sulfur, and density compared with “Improved”. There was little difference in combustion characteristics such as heat release rate pattern, mixture formation and flame development processes between these two fuels. However, it was found that “Class-1” contained more branches in the paraffin fraction and more naphthenes.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Development of the Second Generation Methanol Lean Burn System

1989-09-01
892060
The second generation methanol lean burn system has been developed. The power unit is a new, 4 valve 1.6L in-line four with compact combustion chambers. Lean misfire limit was extended by using a swirl control valve in the intake port which improves combustion under partial load. Lean mixture control is made by using a signal from lean mixture sensor provided in the exhaust manifold. An EGR system has been newly adopted to reduce NOx emissions and a under-floor type catalyst is also used to reduce formaldehyde emission in the cold transient mode in addition to the manifold type catalyst. Permissible excess air ratio range (PEXARR) was defined and used to indicate the potential for reducing vehicle NOx emissions in engine dynamometer tests to optimize compression ratio, valve timing and swirl ratio and to evaluate the effect of the EGR.
X