Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Emissions from Advanced Ultra-Low-NOx Heavy-Duty Natural Gas Vehicles

2019-04-02
2019-01-0751
The emissions of two ultralow NOx heavy-duty (HD) vehicles equipped with 0.02 g/bhp-hr low NOx natural gas (NG) engines were evaluated on a chassis dynamometer. This included a waste hauler and a city transit bus, each with a 0.02 g/bhp-hr NOx L9N near zero (NZ) natural gas engine. The vehicles were tested over a variety of different cycles, including the Urban Dynamometer Driving Schedule (UDDS), port drayage cycles, transit bus cycles, and a refuse truck cycle. For both vehicles, the NOx emissions results were below the 0.02 g/bhp-hr level for most cycles, with the exception of some cold start tests. For the waste hauler, NOx emissions averaged between 0.014 and 0.002 g/bhp-hr for the hot start tests, and from 0.043 to 0.014 g/bhp-hr for the cold start tests. This represented NOx emissions reductions from 97%-100% of compared with previous ISL G 8.9 engines.
Technical Paper

Numerical Analysis Using Fast RANS Simulations and Comparison with Experimental Measurements for Closed and Open Grille Realistic Car Models

2019-04-02
2019-01-0655
This paper details a comprehensive CFD study of all three variants of the DrivAer car geometries: Fastback, Notchback and Estate configurations. The most realistic geometry was chosen for each of the variants; with detailed underbody, wheels and mirrors. In addition to the closed-grille standard DrivAer models, the open-grille variant has also been simulated. Simulations are performed and compared with experiments both with and without ground simulation. Mesh generation was performed without surface alterations (e.g. wrapping) using a novel Binary-Tree automatic unstructured mesher. All simulations were performed using an enhanced k-ε RANS turbulence model within Simerics MP+. A consistent modeling methodology was developed that was rigorously applied to all variants of the DrivAer model and the simulations are shown to have consistently good agreement with experimental measurements.
Journal Article

Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends

2016-04-05
2016-01-0876
Gaseous and particulate matter (PM) emissions were assessed from two current technology heavy-duty vehicles operated on CARB ultra-low sulfur diesel (ULSD), hydrotreated vegetable oil (HVO) blends, and a biodiesel blend. Testing was performed on a 2014 model year Cummins ISX15 vehicle and on a 2010 model year Cummins ISB6.7 vehicle. Both vehicles were equipped with diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) systems. Testing was conducted over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS) and Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Cycle. The results showed lower total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and methane (CH4) emissions for the HVO fuels and the biodiesel blend compared to CARB ULSD. Overall, nitrogen oxide (NOx) emissions showed discordant results, with both increases and decreases for the HVO fuels.
Technical Paper

Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

2016-04-05
2016-01-0799
We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

Numerical Modeling of Vane Oil Pump with Variable Displacement

2012-04-16
2012-01-0637
The oil flow rate in an automotive vane pump varies by virtue of the eccentricity between the inner rotor and the chamber wall. The movement of the chamber wall is facilitated by a ring-spring assembly which is pivoted and moves depending on the balance of system oil pressure and the pre-tensioned spring. In this paper, the ODE of kinetics of the solid piece spring motion is dynamically coupled with CFD simulation of oil flow in a vane pump. A re-meshing step is taken at every time step based on the update of the fluid domain which is determined from the ring position. The algorithm is implemented in the general purpose CFD code PumpLinx and applied to an automotive vane oil pump. The simulation results of pump performance curve are compared with the measurement data, together with the ring positions comparison. A very good agreement is observed between the simulation results and measurement data.
Technical Paper

A Three-Dimensional Design Tool for Crescent Oil Pumps

2008-04-14
2008-01-0003
Due to complexities of interaction among gears and crescent-shaped island, a crescent oil pump is one of the most difficult auto components to model using three dimensional Computational Fluid Dynamics(CFD) method. This paper will present a novel approach to address the challenges inherent in crescent oil pump modeling. The new approach is incorporated into the commercial pump design tool PumpLinx from Simerics, Inc.. The new method is applied to simulate a production crescent oil pump with inlet/outlet ports, inner/outer gears, irregular shaped crescent island and tip leakages. The pump performance curve, cavitation effects and pressure ripples are studied using this tool and will be presented in this paper. The results from the simulations are compared to the experiment data with excellent agreement. The present study shows that the proposed computational model is very accurate and robust and can be used as a reliable crescent pump design tool.
Technical Paper

An Efficient 3D Transient Computational Model for Vane Oil Pump and Gerotor Oil Pump Simulations

1997-02-24
970841
This paper presents a Computational Fluid Dynamic(CFD) model for the oil pump simulations aimed at better understanding the flow characteristics for improving their designs and reducing product development cycles. Several advanced numerical technologies have been developed to handle the complex geometries of oil pumps and the moving interfaces between the rotating and stationary parts. Two basic oil pump configurations, a vane oil pump and a gerotor oil pump, have been studied with the present method. The numerical results are compared with the existing experimental data.
Technical Paper

Computational Analysis of Oil Pumps with an Implicit Pressure Based Method Using Unstructured Mixed Element Grids

1996-02-01
960423
This paper presents a novel computational method for the flow simulations in the automotive oil pumps. The objective of this effort is to develop an advanced Computational Fluid Dynamics (CFD) tool to improve oil pump designs and efficiency by detailed analysis of unsteady fluid flow patterns inside stationary and rotating passages of an oil pump. To achieve this goal, several state-of-the-art computational technologies have been implemented into a general purpose unstructured grid code to handle numerical difficulties posed by complex geometry and moving parts of oil pumps. Most challenging numerical issues resolved in this paper include moving/deforming cells inside pump pockets, arbitrary sliding interface to connect moving and stationary parts and large grid distortions due to the great volume change of the pump pockets etc. A practical validation case, a vane oil pump, is studied using the presented method. The numerical results are compared with available experiment data.
X