Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effects of Port Injection Specifications on Air-Fuel Ratio and Emission Behavior under Transient Operation

2018-10-30
2018-32-0012
When an electronically controlled fuel injection device is located at downstream in intake port (hereinafter defined as downstream injection, on the other hand, upstream injection is defined as that fuel injection device is located at upstream in intake port), the possibilities of an improvement in the engine startability, increase in maximum power, and decrease in THC during warming have been reported in visualizations of the intake port. In addition, the amount of wall adhesion decreased with downstream injection in previous paper [1]. In this paper, we examine the influence on the amount of wall adhesion due to the difference in injection position on fuel transport in the intake port during transient operation and the obtained exhaust A/F and the amount of exhaust gas emitted during transient operation are evaluated.
Technical Paper

Effects of Port Injection Specifications on Emission Behavior of THC and Engine Maximum Power

2017-11-05
2017-32-0059
In this paper, it is also elucidated that the influence of the downstream injection, which caused different fuel behavior in contrast with upstream injection, on the THC after warm-up and at the maximum power, as well as its mechanism. The mechanism is clarified by use of the intake port visualization system. First, at each injection position, the effect of injection timing on THC emission after warm-up was evaluated. In the downstream injection, THC emission increases during the injection timing, in which the fuel spray directly flows in-cylinder during the intake process (hereinafter defined as the intake valve opening injection timing), and the amount of THC emission is reduced at the other injection timing (hereinafter defined as the intake valve closing injection timing). Based on the results of visualizing the intake port, injected fuel phase near the intake valve is spray in the downstream injection.
Technical Paper

Optimization of Intake Port for Improvement of Fuel Consumption and Torque

2017-11-05
2017-32-0055
In this study on the motorcycle engine, we investigated the geometry of the newly developed intake port with an objective of improving the fuel consumption and the torque in practical range. Herein we present the results obtained. We believe that an effective measure for achieving the stated objective is to improve the combustion speed and combustion stability. To realize that, it is necessary to increase the turbulence during combustion and improve the homogeneity of air-fuel mixture. To investigate the feasible shape of the port, the CFD simulation (including fuel spray analysis) was performed and a geometry that improved the turbulent kinetic energy and mixture homogeneity at the time of ignition was selected. For confirming the combustion improvement effect achieved by tumble strengthening, an engine test was conducted with the same amount of intake air as that used in.
Journal Article

Effects of Port Injection Specifications on Emission Behavior of THC

2016-11-08
2016-32-0065
In port injection, it is difficult to control in-cylinder fuel supply of each cycle in a transient state as cold start (in this paper, cold start is defined as several cycles from cranking at low engine temperature). Hence, THC, which is one of regulated emission gases, is likely to increase at cold start. As one of THC emission reduction approaches at cold start, the optimization of fuel injection specifications (including injection position and spray diameter) is expected to reduce THC emission. Setting injection position as downstream position is expected to secure the in-cylinder fuel supply amount at cold start because of small fuel adhesion amount on an intake port wall and a short distance between the injection position and in-cylinder. The position injection contributes to reduction of THC emission due to elimination of misfire.
X