Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Two Prototype Engines with Colliding and Compression of Pulsed Supermulti-Jets through a Focusing Process, Leading to Nearly Complete Air Insulation and Relatively Silent High Compression for Automobiles, Motorcycles, Aircrafts, and Rockets

2020-04-14
2020-01-0837
We have proposed the engine featuring a new compressive combustion principle based on pulsed supermulti-jets colliding through a focusing process in which the jets are injected from the chamber walls to the chamber center. This principle has the potential for achieving relatively silent high compression around the chamber center because autoignition occurs far from the chamber walls and also for stabilizing ignition due to this plug-less approach without heat loss on mechanical plugs including compulsory plasma ignition systems. Then, burned high temperature gas is encased by nearly complete air insulation, because the compressive flow shrinking in focusing process gets over expansion flow generated by combustion.
Technical Paper

Experimental Study of Spark-Assisted Auto-Ignition Gasoline Engine with Octagonal Colliding Pulsed Supermulti-Jets and Asymmetric Double Piston Unit

2018-10-30
2018-32-0004
Much effort has been devoted to studies on auto-ignition engines of gasoline including homogeneous-charge combustion ignition engines over 30 years, which will lead to lower exhaust energy loss due to high-compression ratio and less dissipation loss due to throttle-less device. However, the big problem underlying gasoline auto-ignition is knocking phenomenon leading to strong noise and vibration. In order to overcome this problem, we propose the principle of colliding pulsed supermulti-jets. In a prototype engine developed by us, octagonal pulsed supermulti-jets collide and compress the air around the center point of combustion chamber, which leads to a hot spot area far from chamber walls. After generating the hot spot area, the mechanical compression of an asymmetric double piston unit is added in four-stroke operation, which brings auto-ignition of gasoline.
Technical Paper

Automotive Vision Platform Equipped with Dedicated Image Processor for Multiple Applications

2004-03-08
2004-01-0179
A new automotive vision platform has been developed for practical applications. The vision platform simultaneously realizes high-performance computing power and reliability for automotive use by using a newly developed dedicated image processor. The developed processor has specialized and novel hardware allowing it to process a large amount of image data at high speed under a moderate clock frequency. The vision platform has enough capability to process multiple applications at the same time. In this paper, we describe the unified memory architecture in the vision platform. We introduce specific functional units for various applications such as the edge analysis unit. We report results from experiments with a real-time on-board lane recognition system.
X