Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Aerodynamics Evaluation of Road Vehicles in Dynamic Maneuvering

2016-04-05
2016-01-1618
A road vehicle’s cornering motion is known to be a compound motion composed mainly of forward, sideslip and yaw motions. But little is known about the aerodynamics of cornering because little study has been conducted in this field. By clarifying and understanding a vehicle’s aerodynamic characteristics during cornering, a vehicle’s maneuvering stability during high-speed driving can be aerodynamically improved. Therefore, in this study, the aerodynamic characteristics of a vehicle’s cornering motion, i.e. the compound motion of forward, sideslip and yaw motions, were investigated. We also considered proposing an aerodynamics evaluation method for vehicles in dynamic maneuvering. Firstly, we decomposed cornering motion into yaw and sideslip motions. Then, we assumed that the aerodynamic side force and yaw moment of a cornering motion could be expressed by superposing linear expressions of yaw motion parameters and those of sideslip motion parameters, respectively.
Journal Article

Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine

2014-04-01
2014-01-1218
This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
Technical Paper

Aerodynamic Pitching Stability of Sedan-Type Vehicles Influenced by Pillar-Shape Configurations

2013-04-08
2013-01-1258
The present study investigated the aerodynamic pitching stability of sedan-type vehicles under the influence of A- and C-pillar geometrical configurations. The numerical method used for the investigation is based on the Large Eddy Simulation (LES) method. Whilst, the Arbitrary Lagrangian-Eulerian (ALE) method was employed to realize the prescribed pitching oscillation of vehicles during dynamic pitching and fluid flow coupled simulations. The trailing vortices that shed from the A-pillar and C-pillar edges produced the opposite tendencies on how they affect the aerodynamic pitching stability of vehicles. In particular, the vortex shed from the A-pillar edge tended to enhance the pitching oscillation of vehicle, while the vortex shed from the C-pillar edge tended to suppress it. Hence, the vehicle with rounded A-pillar and angular C-pillar exhibited a higher aerodynamic damping than the vehicle with the opposite A- and C-pillars configurations.
Journal Article

Unsteady Vehicle Aerodynamics during a Dynamic Steering Action: 2nd Report, Numerical Analysis

2012-04-16
2012-01-0448
Unsteady aerodynamic forces acting on vehicles during a dynamic steering action were investigated by numerical simulation, with a special focus on the vehicles' yaw and lateral motions. Two sedan-type vehicles with slightly different geometries at the front pillar, side skirt, under cover, and around the front wheel were adopted for comparison. In the first report, surface pressure on the body and total pressure behind the front wheel were measured in an on-road experiment. Then the relationships between the vehicles' lateral dynamic motion and unsteady aerodynamic characteristics during cornering motions were discussed. In this second report, the vehicles' meandering motions observed in on-road measurements were modeled numerically, and sinusoidal motions of lateral, yaw, and slip angles were imposed. The responding yaw moment was phase averaged, and its phase shift against the imposed slip angle was measured to assess the aerodynamic damping.
Technical Paper

Unsteady Vehicle Aerodynamics during a Dynamic Steering Action: 1st Report, On-Road Analysis

2012-04-16
2012-01-0446
Relationships between vehicle's high speed stability during a steering action and following aerodynamic coefficients have already been reported in the past: coefficients for time-averaged aerodynamic lift, yawing moment, side force and rolling moment. In terms of the relationships, however, we have occasionally experienced different high speed stability during steering input even with identical suspension property and almost the same aerodynamic coefficients. A vehicle during high speed cornering shows complex behavior due to unsteady air flow around the vehicle and unintentional steering input from a driver. So it is supposed that the behavior is too complex to be fully described only with those aerodynamic coefficients. Through on-road test [1] and CFD analysis [2,3,4], we have studied unsteady aerodynamic characteristics around a vehicle for pitching motion during straight-line high speed driving.
Technical Paper

Simulation and Analysis of Effects of Dynamic Pitching for Idealized Sedan-Type Vehicle Models

2011-04-12
2011-01-0153
We investigate the pitching stability characteristics of sedan-type vehicles using large-eddy simulation (LES) technique. Pitching oscillation is a commonly encountered phenomenon when a vehicle is running on a road. Attributed to the change in a vehicle's position during pitching, the flow field around it is altered accordingly. This causes a change in aerodynamic forces and moments exerted on the vehicle. The resulting vehicle's response is complex and assumed to be unsteady, which is too complicated to be interpreted in a conventional wind tunnel or using a numerical method that relies on the steady state solution. Hence, we developed an LES method for solving unsteady aerodynamic forces and moments acting on a vehicle during pitching. The pitching motion of a vehicle during LES was produced by using the arbitrary Lagrangian-Eulerian technique. We compared two simplified vehicle models representing actual sedan-type vehicles with different pitching stability characteristics.
Journal Article

Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 1st Report: On-Road and Wind-Tunnel Studies on Unsteady Flow Characteristics that Stabilize Vehicle Behavior

2009-04-20
2009-01-0004
This study shows an example in which the conventional aerodynamic evaluation method that focuses on “steady” aerodynamic lift coefficient is not necessarily sufficient to evaluate vehicle's straight-ahead stability at high speed, and proposes a new aerodynamic evaluation method for vehicle stability. In vehicle development, it is generally said that vehicle with lower aerodynamic lift coefficient has better straight-ahead stability at high speed. However, in some cases, straight-ahead stability differs between two vehicles with similar low aerodynamic lift coefficient. It is natural to think that this variation is caused by the difference of suspension characteristics or vehicle body rigidity. But from our experiences, different straight-ahead stability was observed between two vehicles having same suspension characteristics, same vehicle body rigidity and almost similar aerodynamic lift coefficient, but different vehicle configurations.
Technical Paper

Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation

2003-03-03
2003-01-1314
Aerodynamic noise generated in production vehicle has been evaluated using experiment and numerical simulation. Finite difference method (FDM) and finite element method (FEM) are applied to analyze the flow field, and Lighthill's analogy is employed to conduct acoustic analysis. The flow fields around front-pillar obtained by numerical simulations agree with those by experiment for two cases with different front-pillar shape. Moreover, the distribution of acoustic source predicted by FEM is consistent with that obtained by experiment. Present study ascertained the feasibility and applicability of FEM with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Development of a High-Pressure Fueling System for a Direct-Injection Gasoline Engine

1998-05-04
981458
A direct-injection gasoline engine that uses a stratified charge combustion process was developed by Nissan and released in the Japanese market toward the end of 1997. This new engine is based on Nissan's VQ engine, which enjoys a good reputation for its quick throttle response and low fuel consumption, and has been developed to accomplish the objectives of reducing fuel consumption by stratified charge combustion and securing high power output. The fuel injectors are connected by an arrangement of lightweight, small-diameter fuel lines that distribute fuel to each injector under high pressure. This system was adopted in order to reconcile the use of an aerodynamic straight intake port with the desired fuel injection position. The use of a casting net injector, which uniformly distributes the fuel spray above the piston, makes it possible to accomplish stratified charge combustion with a shallow-bowl piston.
X