Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

1998-11-16
982833
The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

Additional Notes on Finite Element Models of Deformable Featureless Headform

1997-02-24
970164
Model characteristics of a finite element deformable featureless headform with one to four layers of solid elements for the headform skin are studied using both the LS-DYNA3D and FCRASH codes. The models use a viscoelastic material law whose constitutive parameters are established through comparisons of drop test simulations at various impact velocities with the test data. Results indicate that the one-layer model has a significant distinct characteristic from the other (2-to-4-layer) models, thus requiring different parametric values. Similar observation is also noticed in simulating drop tests with one and two layers of solid elements for the headform skin using PAM-CRASH. When using the same parametric values for the viscoelastic material, both the LS-DYNA3D and FCRASH simulations yield the same results under identical impact conditions and, thereby, exhibit a “functional equivalency” between these two codes.
X