Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

A Biomechanical Face for the Hybrid III Dummy

1995-11-01
952715
Biomechanical data on the response of the face to localized and distributed loads are analyzed to provide performance goals for a biomechanically realistic face. Previously proposed facial injury assessment techniques and dummy modifications are reviewed with emphasis on their biomechanical realism. A modification to the Hybrid III dummy, called the GM Hybrid III Deformable Face, is described. The modification produces biomechanically realistic frontal impact response for both localized and distributed facial loads and provides for contact force determination using conventional Hybrid III instrumentation. The modification retains the anthropometric and inertial properties and the forehead impact response of the standard Hybrid III head.
Technical Paper

Displacement Responses of the Shoulder and Thorax in Lateral Sled Impacts

1993-11-01
933124
Three-dimensional film analysis was used to study the response of the shoulder and thoracic skeleton of cadavers to lateral sled tests conducted at Wayne State University. The response of the shoulder structure was of particular interest, although, it is perhaps the most difficult skeletal structure to track in a side impact. Results of the three-dimensional film analysis are given for rigid impacts at 6.7 and 9.1 meters per second, and for padded impacts averaging 9 meters per second. Results from a two-dimensional film analysis are included for the impacted clavicle which could not be tracked by the three-dimensional film analysis. Displacements at various locations on the shoulder and thoracic skeleton were normalized to estimate the response of a fiftieth percentile male.
Technical Paper

Regional Tolerance of the Shoulder, Thorax, Abdomen and Pelvis to Padding in Side Impact

1993-03-01
930435
Lateral impact testing has been performed on the shoulder, thorax, abdomen and pelvis of human cadavers by several investigators. The impacts have either been whole body impacts in sled tests or pendulum type impacts to the separate regions. Based on the forces produced in these tests and the accompanying injury, initial recommendations can be made on force-tolerance and padding tolerance to the various regions of the human body in side impact. The pelvis has the highest force tolerance, followed by the shoulder, abdomen and thorax. Padding crush strength tolerance based on these forces and estimated contact areas are presented. This information is of practical importance to engineers who design door interior trim for side impact safety.
Technical Paper

Biomechanical Response and Injury Tolerance of the Thorax in Twelve Sled Side Impacts

1990-10-01
902307
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This series of runs provided a good test of how injury criteria perform under a variety of impact surface conditions. In this study thoracic injury criteria based on force, acceleration, compression, and velocity x compression (VC) were evaluated. Maximum compression and VCmax proved to be the best injury indicators in this series. Biomechanical response and injury tolerance are also presented.
Technical Paper

Biomechanical Response and Injury Tolerance of the Pelvis in Twelve Sled Side Impacts

1990-10-01
902305
Twelve side impact sled tests were performed using a horizontally accelerated sled and a Heidelberg-type seat fixture. The purpose of these tests was to better understand biomechanical response and injury tolerance in whole-body side impacts. In these tests the subject's whole body impacted a sidewall with one of three surface conditions: 1) a flat, rigid side wall, 2) a side wall with a 6″ pelvic offset, or 3) a flat, padded side wall. This paper presents the biomechanical response and injury tolerance data obtained for the pelvis. Peak values of sacral-y acceleration, pelvic force, compression and velocity x compression were evaluated as predictors of pelvic injury. Based on Logist analysis, Vmax x Cmax was the best predictor of probability of pelvic fracture in this test series, while peak pelvic force and peak compression also performed well.
X