Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Prediction Technology of Output Power and Intake-Exhaust Noise Using 1D-Simulation for Small-Displacement Motorcycles

2010-09-28
2010-32-0004
Using a 1D simulation that transforms the 3D shape of intake-exhaust systems into one dimension and calculates the thermodynamics and fluid gas dynamics of internal combustion engines, a prediction technology of the output power and intake-exhaust noise for small- displacement single-cylinder motorcycles was established. Output power can be calculated accurately for various engines with different displacements and cooling systems by adjusting the boundary conditions in the calculation model. The intake-exhaust noise can be calculated accurately by clarifying some important points for accuracy when transforming the 3D shapes of the intake-exhaust system into the 1D model and by reflecting them in the calculation model. As for mufflers that have complicated internal structures, the calculation of exhaust-noise cannot be made with sufficient accuracy because 1D simulation does not calculate spatial flow behavior. But, improvement of accuracy is expected using a 1D-3D coupled simulation.
Technical Paper

Enlargement of Auto-Ignition Regions by Applying a Stratified Charge Concept

2007-10-30
2007-32-0039
The auto-ignition attracts researchers as an ultimate combustion method that could simultaneously reduce fuel consumption and NOx emissions. The authors have studied auto-ignition combustion in the two-stroke gasoline engines aiming at vehicle engine applications. However, our attempts were in an impasse with the onset of irregular combustion in the lower speed and the extremely lower load range. As a solution for this problem, this paper proposes a new auto-ignition concept, i.e. Stratified Charge Auto-Ignition (SCAI), which focuses on the thermal distribution and mixture formation in the combustion chamber. Visualization of the direct injection spray formation was conducted first, and then a combustion chamber design was determined by using a CFD simulation, so as to form a mixture at the hottest spot in the combustion chamber.
Technical Paper

Practical Application of Combustion Simulation using CFD for Small Engine of Two-Wheeled Vehicle

2004-09-27
2004-32-0006
The combustion simulation based on CFD (Computational Fluid Dynamics) was attempted in order to visualize in-cylinder combustion phenomena of a small displacement, high speed four-stroke SI engine for motorcycle applications. To verify the results of the simulation, the steady state flow in a cylinder, the fuel spray behavior and the flame propagation behavior in an actual engine were measured and compared. The results were that an adequate correlation was confirmed in each phenomenon, proving that the CFD was applicable as a means of visualization. As the result of the investigation of the combustion system applying this technique, improvements such as the specific fuel consumption and the extension of the lean combustion zone were attained, assuring effectiveness of this technique for actual engine development. This technique has been applied to the development of the world's first four-stroke 50cm3 PGM-FI (Programmed Fuel Injection) engine.
Technical Paper

Development of a New Life Equation for Ball and Roller Bearings

2000-09-11
2000-01-2601
The conventional rolling bearing life equation (1), which is based on the theory of Lundberg and Palmgren, has a problem in that it does not match the actual bearing life in all operating conditions. For instance, while the actual life of a bearing under clean lubrication is 20 times longer than the calculated life, actual life under contaminated lubrication is as low as one-tenth of the calculated life. To solve this problem, the following life equation (Eq. 1: Advanced Bearing Life Equation) was developed with the aNSK life modification factor: The new aNSK factor is based on data from bearing life aNSK tests involving over 450 roller bearings and over 550 ball bearings under a variety of operating conditions. The new life equation with the aNSK factor showed a satisfactory fit between calculated life and actual life.
Technical Paper

A New Method for Studying Surface-Initiated Bearing Failure

1997-09-08
972712
This paper describes method which experimentally reproduces the most prevalent bearing fatigue failure modes experienced in ball and roller bearing applications. Generally, bearing fatigue life is divided into two groups. One is a surface-originating type of fatigue. The other is a subsurface-originating type of fatigue. The mechanism of each type of fatigue has been studied. Bearing materials were developed for long-life based on the study of the mechanism of fatigue. However, the condition of the evaluation method, or life test, may be different from the actual application conditions. For instance, the subsurface-originating type of fatigue is tested under extremely heavy loads. The surface-originating type of fatigue is tested with severely contaminated lubrication. There is the possibility that the evaluation methods do not simulate the failure modes that are actually present in the field.
Technical Paper

Long Life Bearings for Automotive Alternator Applications

1995-02-01
950944
This paper investigates and describes the fatigue mechanism in bearings for automotive alternators. We have analyzed the peculiar microstructure change found in these bearings. We have also investigated the effects of grease properties, vibration, and elastic deformation of the outer ring. By analyzing the bearings used in actual engine tests and grease tests for fundamental characteristics, we were able to conclude that the fatigue causes were two-fold: load amplification caused by resonance and high bending stresses caused by elastic deformation of the outer ring. As a practical result, we were able to adopt a newly formulated grease which decreased the vibration level and the peak rolling element load. This led to the development of longer life bearings for automotive alternators.
Technical Paper

Fighting Debris: Increasing Life with HTF Bearings for Transmissions

1994-03-01
940728
Lubricant contamination is a frequent hazard to bearing life in automotive transmissions. The “Sealed Clean” bearing concept uses dynamic, rubber seals to exclude significant contamination from transmission bearings. However there is often insufficient space in a roller bearing application to accommodate seals. HTF steel specifications and processing were developed for such applications. Debris within a rotating bearing will create indentations in the raceway. Contact stress is concentrated at the indentation edges and fatigue damage is accelerated. A indentation's diameter and edge radius determine the stress concentration between the ball and raceway. The HTF steel specification and tightly controlled heat treatment processing have been developed to provide long life despite the contamination hazard. Testing confirms the effectiveness of the new material.
X