Refine Your Search

Search Results

Author:
Viewing 1 to 9 of 9
Technical Paper

Impact of One Side Hydrophobic Gas Diffusion Layer on Water Removal Rate and Proton Exchange Membrane Fuel Cell Performance

2012-04-16
2012-01-1221
Proton exchange membrane fuel cell (PEMFC) is considered to be one of the best clean power sources for transportation application. Water management is a critical issue, conventionally achieved by coating the cell components with the hydrophobic materials. In this work, the effects of one surface-coated cathode gas diffusion layer (GDL) on water removal rate, droplet dynamics, and the cell performance have been studied. The coated GDL is fabricated by coating one side of raw GDL (SpectraCarb 2050-A) with 15 wt. % of polytetrafluoroethylene (PTFE) solution but the other side remains uncoated. The raw GDL is commercial one and made of carbon fiber. The contact angles (θ) on both sides of the coated and raw GDL are measured. The pore size distribution, and capillary pressure are measured for the GDL, studied using the method of standard porosimetry (MSP). Water removal rate is measured by using a 20 ml syringe barrel, wherein a 13 mm diameter GDL token is stuck on the barrel opening.
Technical Paper

Numerical Modeling of the Impingement Process of Urea-Water Solution Spray on the Heated Walls of SCR Systems

2012-04-16
2012-01-1301
Improving the NOx removal efficiency of an automotive urea-based SCR system requires optimized injection system to minimize wall deposition while providing uniform distribution of exhaust gases and reductant mixture at the entrance of the catalyst. The focus of the current study is to develop and validate a three-dimensional computational model capable of simulating the urea-water-solution (UWS) spray/wall interaction. The interaction between the injected UWS spray droplets and the surrounding gas is modeled using the Eulerian-Lagrangian approach,. A specially developed multicomponent vaporization model is implemented to simulate the depletion mechanism of individual UWS droplets. The spray/wall interaction mechanism involves spray/wall impingement and wall film formation. While the spray/wall impingement mechanism is modeled using a standard criteria, the O'Rourke and Amsden model for wall film formation is modified to account for the multicomponent nature of the UWS spray.
Technical Paper

Modeling of the Injection and Decomposition Processes of Urea-Water-Solution Spray in Automotive SCR Systems

2011-04-12
2011-01-1317
The current work aims to develop a reliable numerical model simulating the depletion and decomposition process of urea-water solution (UWS) droplets injected in a hot exhaust stream as experienced in an automotive urea-based selective catalytic reduction (SCR) system. The depleting process of individual UWS droplets in heated environment is simulated using a multicomponent vaporization model with separate depletion law for each component. While water depletion is modeled as a vaporization process, urea depletion from the UWS droplet is modeled using two different approaches. The first approach models urea depletion as a vaporization process with an experimentally determined saturation pressure. The second approach models urea depletion as a direct thermolysis process from molten urea to ammonia and isocyanic acid using various sets of kinetic parameters. Comparison with experimental data shows the superiority of modeling urea depletion as a vaporization process.
Technical Paper

Numerical Simulation of the Soot and NOx Formations in a Biodiesel-Fuelled Engine

2011-04-12
2011-01-1385
The importance of using biodiesel as an alternative in diesel engines has been demonstrated previously. A reduction in the soot, CO and HC emissions and an increase in the NO emission burning biodiesel fuels were reported consistently in previous technical papers. However, a widely accepted NO formation mechanism for biodiesel-fueled engines is currently lacking. As a result, in past multi-dimensional simulation studies, the NO emission of biodiesel combustion was predicted unsatisfactorily. In this study, the interaction between the soot and NO formations is considered during the prediction of the soot and NO emissions in a biodiesel-fueled engine. Meanwhile, a three-step soot model and an eight NO model which includes both the thermal NO mechanism and prompt mechanism are implemented.
Technical Paper

Multi-phase Multi-dimensional Analysis of the Effect of Fuel Quality on PEM Fuel Cell Performance

2010-04-12
2010-01-0853
PEM fuel cell is a promising alternative green power source for vehicular application. However, its performance, cost and durability are sensitively impacted by its sensitivity to impurities in both fuel and air streams. In this study, a multi-phase multi-dimensional model with carbon monoxide in the anode side has been developed. The present model includes flow channel, gas diffusion layer, catalyst layer, and polymer electrolyte membrane, considering carbon monoxide (CO) poisoning and oxygen bleeding in the fuel stream. The model equations, based on the conservation laws for mass, momentum, energy, and species, considered in a steady state, are solved by using Fluent software. The results of the effects of CO concentration, a series of 3D simulation in anode catalyst layer, as well as oxygen bleeding, are presented, which indicate that CO has a severe influence on the performance of PEM fuel cell.
Technical Paper

Numerical Study on the Effects of Biodiesel Fuel on Combustion and Emission Characteristics in a Direct Injection Diesel Engine

2010-04-12
2010-01-1259
The effects of the physical and chemical properties of biodiesel fuels on the combustion process and pollutants formation in Direct Injection (DI) engine are investigated numerically by using multi-dimensional CFD models. In the current study, methyl butanoate (MB) and n-heptane are used as the surrogates for the biodiesel fuel and the conventional diesel fuel. Detailed kinetic chemical mechanisms for MB and n-heptane are implemented to simulate the combustion process. It is shown that the differences in the chemical properties between the biodiesel fuel and the diesel fuel affect the whole combustion process more significantly than the differences in the physical properties. While the variations of both the chemical and the physical properties between the biodiesel and diesel fuel influence the soot formation at the equivalent level, the variations in the chemical properties play a crucial role in the NO emissions formation.
Technical Paper

Numerical Investigation of Advanced Compressor Technologies to Meet Future Diesel Emission Regulations

2009-04-20
2009-01-1469
The response to increasingly stringent light duty diesel emission regulation is a nearly unanimous increase in heavy Exhaust Gas Recirculation (EGR) application to reduce feedgas NOx emissions. Little attention has been paid to the fact that heavy EGR usage is likely to push the engine operating conditions towards less efficient or even unstable regions of conventional centrifugal compressor operating maps. Moreover, the low oxygen content at part load operation also poses transient response challenges. Therefore, improving turbocharger efficiency at part load and extending the stable operating range is becoming critical for viable future low emission diesel engines. In this study of a turbocharger compression system, encompassing the airflow geometry from compressor impeller inlet to volute exit, a dual volute compressor concept was introduced, and Computational Fluid Dynamics (CFD) was used to investigate its effects on the overall expected performance level and range.
Technical Paper

Non-isothermal Modeling of Polymer Electrolyte Membrane Fuel Cell Stacks

2006-04-03
2006-01-0220
A mathematical model has been developed to analyze the heat transfer and its effect on the performance of a polymer electrolyte membrane (PEM) fuel cell stack. It was found that the individual cell voltage is mainly affected by the temperature when the effects of concentration variances are minimized by ensuring sufficient reacting flow uniformity for the cells in the stack. The coolant flow rate should be properly controlled according to the amount of heat generation to reduce the cell-to-cell voltage variance and to save the pumping power as well. The stack performance can be improved by optimizing stack geometrical parameters and operating conditions.
Technical Paper

Number-Based Droplet Velocity Distribution in High Pressure Diesel Fuel Sprays

1994-09-01
941689
Using a Laser Doppler Velocimetry with Burst Spectrum Analyzer (LDV-BSA), droplet velocities of a diesel fuel spray under a pressure higher than 100 MPa were measured at different points within the spray profile. Results show that although the mean velocity distribution at the sampling plane is rather uniform, the number-based droplet velocity distributions of two sampling points at the same plane are different. The conclusions agree with theoretical predictions through maximum entropy principle qualitatively.
X