Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

2009-04-20
2009-01-0800
Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (ferrite, bainite, austenite, martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined.
Journal Article

Applicability of Micromechanics Model Based on Actual Microstructure for Failure Prediction of DP Steels

2009-04-20
2009-01-0469
In this paper, various micromechanics models based on actual microstructures of DP steels are examined in order to determine the reasonable range of martensite volume fraction where the methodology described in this study can be applied. For this purpose, various micromechanics-based finite element models are first created based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite and martensite phases and also the influence of voids in the ferrite phase on the overall ductility of DP steels.
Technical Paper

Modeling of Failure Modes Induced by Plastic Strain Localization in Dual Phase Steels

2008-04-14
2008-01-1114
Microstructure level inhomogeneities between the harder martensite phase and the softer ferrite phase render the dual phase (DP) steels more complicated failure mechanisms and associated failure modes compared to the conventionally used low alloy homogenous steels. This paper examines the failure mode DP780 steel under different loading conditions using finite element analyses on the microstructure levels. Micro-mechanics analyses based on the actual microstructures of DP steel are performed. The two-dimensional microstructure of DP steel was recorded by scanning electron microscopy (SEM). The plastic work hardening properties of the ferrite phase was determined by the synchrotron-based high-energy X-ray diffraction technique. The work hardening properties of the martensite phase were calibrated and determined based on the uniaxial tensile test results. Under different loading conditions, different failure modes are predicted in the form of plastic strain localization.
Technical Paper

Global Failure Criteria for SOFC Positive/Electrolyte/Negative (PEN) Structure

2007-04-16
2007-01-0997
Due to mismatch of the coefficients of thermal expansion (CTE) of various layers in the PEN (positive/electrolyte/ negative) structures of solid oxide fuel cells (SOFC), thermal stresses and warpage on the PEN are unavoidable due to the temperature changes from the stress-free sintering temperature to room temperature during the PEN manufacturing process. In the meantime, additional mechanical stresses will also be created by mechanical flattening during the stack assembly process. In order to ensure the structural integrity of the cell and stack of SOFC, it is necessary to develop failure criteria for SOFC PEN structures based on the initial flaws occurred during cell sintering and stack assembly.
Technical Paper

Effect of Windshield Design on High Speed Impact Resistance

2000-10-03
2000-01-2723
An axisymmetric finite element model is generated to simulate the windshield glass damage propagation subjected to impact loading of a flying object. The windshield glass consists of two glass outer layers laminated by a thin poly-vinyl butyral (PVB) layer. The constitutive behavior of the glass layers is simulated using brittle damage mechanics model with linear damage evolution. The PVB layer is modeled with linear viscoelastic solid. The model is used to predict and examine through-thickness damage evolution patterns on different glass surfaces and cracking patterns for different windshield designs such as variations in thickness and curvatures.
Technical Paper

Emissions Analysis of Small Utility Engines

1995-09-01
952080
As the federal regulations of on-road engine exhaust emissions become more and more stringent, the exhaust emissions of small utility engines are now under close study and are becoming subject to federal regulations. This paper reports the on-going research on emissions and test procedures for small utility engines at the University of Michigan. A group of small utility engines, selected by the National Fuels and Emissions Laboratory of the U.S. Environmental Protection Agency (EPA), were tested at various air/fuel ratios under steady state and transient operation. Mass rate of emissions of carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (HC) and oxides of nitrogen (NOx) were measured using dilute sampling. The lean operation limit of some engines was studied to find a compromise among emissions, engine power, and engine life. Experimental research was also undertaken to study emission control techniques; such as catalytic conversion, air injection, and fuel injection.
X