Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

An Experimental Study Combustion and Emission Characteristics of HCNG with Dual Spark plug in a Constant Volume Chamber

2011-10-06
2011-28-0019
Finding an alternative fuel and solving the environmental pollution are the main targets for the future internal combustion engines. CNG(Compressed Natural Gas) bus is used for a public transportation in Korea because it has low carbon/hydrogen ratio and discharges low pollutant emissions. But CNG fuel has low burning rate. Therefore, in this study, hydrogen is added and DSP(Dual Spark Plugs) are used for making up for the demerits in CNG. HCNG(Hydrogen-CNG) as a fuel is now considered as one of the alternative fuels due to its low pollutant emissions and high burning rate. An experimental study was carried out to obtain the fundamental data about the combustion and emission characteristics of premixed hydrogen and CNG in a CVC(Constant Volume Chamber) with various fraction of Hydrogen-CNG blends using SSP(Single Spark plug) and DSP.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

Dynamic Evolution of the 3-D Flow Field During the Latter Part of the Intake Stroke in an IC Engine

1998-02-23
980485
Measurements of the temporal evolution of the 3-D velocity field were performed in an IC engine during the latter part of the intake stroke using a Water Analog Engine Simulation Rig and the 3-D Particle Tracking Velocimetry technique (3-D PTV). The engine head tested was a typical 4 valve, pent-roof type combustion chamber shape with slightly asymmetric intake passages to favor a preferred swirl with one intake valve almost deactivated to reinforce the swirling flow pattern. This study was aimed at characterizing the dynamic development of the flow field resulting from this head geometry and asymmetric valve event during the latter part of the intake stroke. The most salient feature of this flow field is that this final, highly organized and energetic vortex does not emerge until relatively late in the intake stroke. Even as late at 60° BBDC, the flow field is still characterized by smaller (of the order of 1/4 or 1/3 of the bore size) structures, particularly in the tumble plane.
Technical Paper

Rapid Evaluation of Variable Valve Lift Strategies Using 3-D In-Cylinder Flow Measurements

1996-02-01
960951
Variable valve lift strategies were evaluated using a Water Analog Engine Simulation Rig with 3-D Particle Tracking Velocimetry (3-D PTV) to measure the 3-D flow field at the end of the intake stroke. The measurements were carried out with a 4-valve, pent-roof type head. The intake valves were actuated by independently controlled servo systems to allow various valve lift profiles to be implemented in software. For each configuration, a minimum of 100 cycles were acquired and processed. Ensemble averaged 3-D mean and fluctuating flow fields were extracted. In addition, a number of integrated parameters (total and fluctuating kinetic energy; swirl, tumble and cross-tumble ratios) were calculated for each case.
X