Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Engine Oil Components Effects on Turbocharger Protection and the Relevance of the TEOST 33C Test for Gasoline Turbocharger Deposit Protection

2017-10-08
2017-01-2341
Countries from every region in the world have set aggressive fuel economy targets to reduce greenhouse gas emissions. To meet these requirements, automakers are using combinations of technologies throughout the vehicle drivetrain to improve efficiency. One of the most efficient types of gasoline engine technologies is the turbocharged gasoline direct injection (TGDI) engine. The market share of TGDI engines within North America and globally has been steadily increasing since 2008. TGDI engines can operate at higher temperature and under higher loads. As a result, original equipment manufacturers (OEMs) have introduced additional engine tests to regional and OEM engine oil specifications to ensure performance of TGDI engines is maintained. One such engine test, the General Motors turbocharger coking (GMTC) test (originally referred to as the GM Turbo Charger Deposit Test), evaluates the potential of engine oil to protect turbochargers from deposit build-up.
Technical Paper

Advanced Lubrication - Enabling and Protecting Turbocharged, Direct Injection Gasoline Engines for Optimum Efficiency

2016-10-17
2016-01-2275
There has been a global technology convergence by engine manufacturers as they strive to meet or exceed the ever-increasing fuel economy mandates that are intended to mitigate the trend in global warming associated with CO2 emissions. While turbocharging and direct-injection gasoline technologies are not new, when combined they create the opportunity for substantial increase in power output at lower engine speeds. Higher output at lower engine speeds is inherently more efficient, and this leads engine designers in the direction of overall smaller engines. Lubricants optimized for older engines may not have the expected level of durability with more operating time being spent at higher specific output levels. Additionally, a phenomenon that is called low-speed pre-ignition has become more prevalent with these engines.
Journal Article

Engine Oil Additive Impacts on Low Speed Pre-Ignition

2016-10-17
2016-01-2277
Low speed pre-ignition (LSPI) is an undesirable combustion phenomenon that limits the fuel economy, drivability, emissions and durability performance of modern turbocharged engines. Because of the potential to catastrophically damage an engine after only a single pre-ignition event, the ability to reduce LSPI frequency has grown in importance over the last several years. This is evident in the significant increase in industry publications. It became apparent that certain engine oil components impact the frequency of LSPI events when evaluated in engine tests, notably calcium detergent, molybdenum and phosphorus. However, a close examination of the impact of other formulation additives is lacking. A systematic evaluation of the impact of the detergent package, including single-metal and bimetal detergent systems, ashless and ash-containing additives has been undertaken using a GM 2.0L Ecotec engine installed on a conventional engine dynamometer test stand.
Technical Paper

Effects of Engine Oil Formulation Variables on Exhaust Emissions in Taxi Fleet Service

2002-10-21
2002-01-2680
The relationship between engine oil formulations and catalyst performance was investigated by comparatively testing five engine oils. In addition to one baseline production oil with a calcium plus magnesium detergent system, the remaining four oils were specifically formulated with different additive combinations including: one worst case with no detergent and production level zinc dialkyldithiophosphate (ZDTP), one with calcium-only detergent and two best cases with zero phosphorus. Emissions performance, phosphorus loss from the engine oil, phosphorus-capture on the catalyst and engine wear were evaluated after accumulating 100,000 miles of taxi service in twenty vehicles. The intent of this comparative study was to identify relative trends.
Technical Paper

Low Temperature Rheological Properties of Aged Crankcase Oils

2000-10-16
2000-01-2943
The low-temperature pumpability of engine oil throughout the engine at startup is an important property. Insuring that fresh oils can be pumped at low temperatures has been a requirement of crankcase lubricants for approximately two decades. Extending the assurance of the oil's low temperature pumpability as it ages under engine operation has been the concern of car manufacturers and lubricant marketers for some time. In order to determine the factors influencing the aged oil's low temperature pumpability, we have undertaken a fleet test. We found that as lubricants are aged, excellent low temperature pumping properties can be maintained if lubricants are formulated with viscosity-index improvers incapable of forming polymer networks, base oils with a low tendency to form wax networks, effective pour-point depressants, and if oil drain intervals are not extended beyond the performance limitations of the specific lubricant category.
Technical Paper

Comparison of the Physical and Chemical Changes Occurring in Oils During Aging in Vehicle and Engine Fuel Economy Tests

1998-10-19
982504
Oils, which do not contain Molybdenum (Mo)-based friction modifiers, were aged in vehicle and engine fuel economy tests in order to determine if the different aging protocols caused similar changes in the physical and chemical properties of these oils. Vehicle and engine tests were found to cause similar changes in the high temperature high shear (HTHS) viscosities and boundary friction coefficients of oils. We also observed that the extent of oil oxidation, nitration and volatilization occurring in the vehicle tests could be duplicated by aging in the engine tests. The fuel economy performance of aged oils was also measured in engine tests and found to be highly dependent upon the aged oil's HTHS viscosity. However, we observed that an aged oil's boundary friction coefficient, by itself, did not correlate to an aged oil's fuel economy performance in the high temperature fuel economy measurement stages of engine tests.
Technical Paper

Critical Oil Physical Properties that Control the Fuel Economy Performance of General Motors Vehicles

1998-10-19
982503
The effect of critical physical properties of engine oils on fuel economy performance in General Motors (GM) vehicles has been measured. Reductions in an oil's high temperature high shear viscosity, boundary friction coefficient and pressure-viscosity coefficient were found to equally improve fuel economy. These same oil properties affect fuel economy measured in the Sequence VIA engine test. However, fuel economy performance in GM vehicles is more dependent on an oil's boundary friction coefficient and pressure-viscosity coefficient than that measured in the Sequence VIA engine test. New fuel economy measurement conditions have been proposed for the Sequence VIB engine test. Changes in an oil's boundary friction coefficient were found to have the same effect on fuel economy measured under these new measurement conditions as that measured in GM vehicles.
Technical Paper

The Effects of Oil Additives in the Ball Rust Test

1997-10-01
972923
The Ball Rust Test (BRT), a corrosion bench test developed for evaluating the rust preventing qualities of crankcase motor oils, is being proposed as a replacement for the ASTM Sequence IID engine test. Details of this bench test are described in the paper “Development of the Ball Rust Test - A Bench Test Replacement for the Sequence IID Engine Test.” In this paper, a good correlation was established between rust performance in the BRT versus the IID engine test rust rating for a variety of oils. Following the development of the BRT, a comprehensive study was conducted using this bench test to define the effectiveness of oil additive type and concentration on rust inhibition. This paper summarizes these results and offers insight into effective rust control in a corrosive environment. High-base metallic sulfonates were found to be most effective at preventing rust primarily due to preservation of alkalinity.
X