Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Belted Occupant Kinematics and Head Excursion During the Airborne Phase of Vehicle Rollover: Evaluation of the Effects of Rollover-Deployed Curtain Airbags

2014-04-01
2014-01-0527
It is well known from field accident studies and crash testing that seatbelts provide considerable benefit to occupants in rollover crashes; however, a small fraction of belted occupants still sustain serious and severe neck injuries. The mechanism of these neck injuries is generated by torso augmentation (diving), where the head becomes constrained while the torso continues to move toward the constrained head causing injurious compressive neck loading. This type of neck loading can occur in belted occupants when the head is in contact with, or in close proximity to, the roof interior when the inverted vehicle impacts the ground. Consequently, understanding the nature and extent of head excursion has long been an objective of researchers studying the behavior of occupants in rollovers.
Journal Article

Occupant Kinematics and Injury Mechanisms During Rollover in a High Strength-to-Weight Ratio Vehicle

2010-04-12
2010-01-0516
Rollover events involving multiple revolutions are dynamic, high-energy, chaotic events that may result in occupant injury. As such, there is ongoing discussion regarding methods that may reduce injury potential during rollovers. It has been suggested that increasing a vehicle's roof strength will mitigate injury potential. However, numerous experimental studies and published field accident data analyses have failed to show a causal relationship between roof deformation and occupant injury. The current study examines occupant kinematics and injury mechanisms during dolly rollover testing of a vehicle with a high roof strength-to-weight ratio (SWR = 4.8). String potentiometers and high-speed video cameras were used to capture and quantify the dynamic roof motion throughout the rollover. Instrumented Anthropomorphic Test Devices (ATDs) in the front occupant positions allowed for the assessment of occupant kinematics, loading, and injury mechanics during the rollover event.
Technical Paper

The Effects of Subfracture Impact Loading on the Patellofemoral Joint in a Rabbit Model

1996-11-01
962422
This study showed that subfracture impact loading to a joint creates stresses in cartilage and bone which can initiate a chronic osteoarthrosis. The magnitude and location of the impact induced stresses are dependent on the orientation and the intensity of loading. Impact loading produced lesions on retro-patellar cartilage and their depths increased as the thickness of subchondral bone increased with time post-impact. Mechanical tests of cartilage indicated significant softening twelve months post-impact. These alterations are similar to those documented clinically as early OA. In vitro impacts of isolated limbs, together with mathematical models, showed that high mean stress generated during impact may help protect joint tissues from acute injury. This study and others are being used to develop stress-based tissue failure criteria for predicting an osteoarthrosis following subfracture impact loading.
X