Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Research on the Optimal Design of Engine Mounts by Minimizing Transfer Power based on Identifying Excitation and Admittance Matrix

2015-06-15
2015-01-2252
Engine mounts play important roles in interior noise of automobiles. Decoupling optimal design of mounts has been researched for long, but reducing vibration power into body transmitted from engine can be a more intuitive way to improve NVH performance. Some approaches for minimizing transfer power through engine mounts based on finite element model were reported, whose disadvantages are lack of data and inaccuracy at high frequency in some cases. To get an analytic formula of transmitted power, a model considering coupled vibration between the body and the engine is presented here. An admittance function matrix is used to describe the dynamic relationship between the mounting points on the body side. Based on this admittance matrix measured on the full vehicle, and excitation forces identified with acceleration data measured on all mounts, the vibration equation of the coupled model can be established by using Lagrange's methodology.
Technical Paper

A Research on the Sound Quality Contribution of Vehicle Body Panel

2014-04-01
2014-01-0896
Sound quality of vehicle interior noise affects passenger comfort. In order to improve the sound quality of a micro commercial vehicle, the vehicle interior noise under different conditions such as idle, constant speeds and accelerating is recorded by using artificial head with dual microphones. The sound quality of recorded noise is evaluated in both objective and subjective ways. Physical parameters of interior noise are calculated objectively, and annoyance score is analyzed subjectively using paired-comparison method. According to the regression analyzing of the annoyance score and the physical parameters, an objective evaluation parameter of the sound quality is employed. To analyze the vehicle body panel contribution to interior noise sound quality, the location and spectrum characteristics of major panel emission noise sources are identified based on partial singular valued decomposition (PSVD) method.
Technical Paper

The Use of Nearfield Acoustical Holography (NAH) and Partial Field Decomposition to Identify and Quantify the Sources of Exterior Noise Radiated from a Vehicle

1997-05-20
972053
Since powertrain noise sources are usually “hidden” within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial radiation fields that together create the exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address this concern. INAH represents a combination of NAH, reference microphone selection procedures, and coherence techniques. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. A key factor in the success of this procedure is the selection of a good reference microphone sub-set. A selection procedure has been developed by combining condition number and coherence analyses. The partial field determination problem has been approached by using both partial coherence and Singular Value Decomposition (SVD) procedures.
X