Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of Soot and Engine Oil Additive Characteristics on Metallic Wear using Electron Microscopy and Confocal Microscopy

2020-01-24
2019-32-0601
Soot particles are produced inside the combustion chamber of the internal combustion engines and will later be exhausted into the thermosphere. Part of these particles will contaminate the engine oil. When this happens, diesel engine abrasion or, in a worst-case scenario, lubricant starvation will occur. This circumstance will eventually cause engine wear. This research uses X-Ray Fluorescence (XRF) technique to analyze the additive element in engine oil. For wear test, this research uses tribology Four ball wear tester to substitute point contact wear mechanism. Then the worn surface is analyzed with Scanning Electron Microscope (SEM). Confocal Microscope are used to study the effect of additive on soot dispersion in engine oil, which affects the metal wear mechanism. This research use Laser Particle Size Analyzer to investigate performance of soot dispersant additive in each engine oil.
Technical Paper

Effect of Biofuel and Soot on Metal Wear Characteristic Using Electron Microscopy and 3D Image Processing

2017-11-05
2017-32-0095
The soot contamination in used engine oils of diesel engine vehicles was about 1% by weight. The soot and metal wear particle sizes might be in the range of 0-1 µm and 1-25 µm, respectively. The characteristics of soot affecting on metal wear was investigated. Soot particle contamination in diesel engine oil was simulated using carbon black. Micro-nanostructure of soot particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and laser diffraction spectroscopy (LDS). The metal wear behavior was studied by means of a Four-Ball tribology test with wear measured. Wear roughness in micro-scale was investigated by high resolution optical microscopy (OM) , 3D rendering optical technique and SEM image processing method. It was found that the ball wear scar diameter increased proportionally to the soot primary particle size. The effect of biodiesel contamination were also increasing in wear scar diameter.
X