Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

A Comparison of Conversion Efficiencies of Individual Hydrocarbon Species Across Pd- and Pt-Based Catalysts as a Function of Fuel-Air Ratio

1998-10-19
982549
Individual hydrocarbon conversion efficiencies of engine-out emissions have been measured for four different catalyst formulations (Pd-only, trimetallic, Pd/Rh, and Pt/Rh) during stoichiometric and rich operation. The measurements were carried out as a function of fuel-air equivalence ratio (Φ) using a dynamometer-controlled 1993 Ford V8 engine and capillary gas chromatography. HC conversion efficiency was examined in terms of mass conversion efficiency and also using three new definitions of catalyst conversion efficiency. The efficiencies across the four catalysts show similar trends with Φ for almost all HC species. The catalyst efficiencies for alkanes, alkenes, and aromatic species decrease as Φ increases above stoichiometric: alkane efficiencies decrease faster than alkenes which in turn decrease faster than aromatics. All efficiencies fall to zero near Φ = 1.08 except those of MTBE and acetylene, which remain near 100%.
Technical Paper

Laboratory Testing of Cabin Air Filters for the Removal of Reduced-Sulfur Odors

1998-02-23
980873
The next generation of cabin air filters will include the ability to remove not only particulate matter, but odors as well. A key element in the development of odor removal filters is the design of laboratory tests to predict in-service performance. The studies described in this report used a combination of subjective and objective test methods to evaluate a series of odor-removal filters for their ability to remove environmentally significant reduced sulfur compounds. The work was performed in two parts. In the first part the detection, recognition, and annoyance thresholds for hydrogen sulfide and methyl mercaptan were measured using a 37-member odor panel. The second part consisted of a group of tests in which the contaminant concentrations upstream and downstream of six types of filters were measured using an instrumental method.
Technical Paper

A Software Program for Carrying Out Multi-Purpose Exhaust Composition Calculations

1997-02-24
970749
It is frequently useful to calculate the theoretical composition of the major components of vehicle exhaust. A software program has been written in Basic (or Quick Basic) which allows the convenient calculation of volume percents of CO, CO2, O2, H2, and H2O from fuel composition (H/C and O/C ratios), the water content (dew point) of the combustion air, and a chosen stoichiometry (air/fuel ratio). The program considers the Water Gas Shift reaction and the production of hydrogen under fuel rich conditions. The program is valid for both standard gasolines and oxygenated blends. Vehicle emissions data, collected to compare values calculated by the program with actual experimentally determined values from vehicle exhaust, show good agreement for measurements made at a series of air/fuel ratios ranging from lambda of 0.85-1.2.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

Effect of Cylinder Head and Engine Block Temperature on HC Emissions from a Single Cylinder Spark Ignition Engine

1995-10-01
952536
A single-cylinder, two-valve engine was operated with independent cooling circuits for the engine block and cylinder head to investigate the effect of temperature distribution on HC emissions. The goal was to understand and quantify the mechanisms responsible for decreased HC emissions at elevated temperatures. Tests were run at a typical road load condition using two different fuels (a 97 RON blend and isopentane - to eliminate liquid fuel and oil layer absorption effects). The total HC emissions (97 RON fuel) decreased by 15-20% with an increase in either the cylinder head or engine block coolant temperature from 71 to 110 °C. When operating with isopentane the HC emissions decreased by 15-20% with an increase in the engine block temperature from 71 to 110 °C but were essentially unaffected by cylinder head temperature. This indicates that the cylinder head temperature primarily influenced the HC emissions from liquid fuel effects.
Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

Round Robin Analysis of Alcohol and Carbonyl Synthetic Exhaust Samples - Coordinating Research Council

1994-10-01
941944
Recent changes in regulatory practices have brought about a need for speciated analysis of the volatile organic components of vehicle exhaust. The purpose of this study was to allow interested laboratories to participate in a Round Robin so that each could assess their speciation methodologies. “Synthetic exhaust” samples were prepared of mixed DNPH-carbonyl standards deposited on DNPH cartridges, and solutions of alcohol in water. The fifteen participating laboratories included automotive, contract, petroleum and regulatory organizations. The results described in this paper consider only variability associated with the analytical measurement of samples that have already been collected in impingers or on cartridges. In general, alcohols (methanol and ethanol) were quantified without difficulty. With the exception of acrolein and crotonaldehyde, the quantitation of the carbonyl samples was very good considering the variety of analytical methods that were used.
Technical Paper

Air Toxics: A Comparison of the Gas - and Particle-Phase Emissions from a High-Emitter Vehicle with Those from a Normal-Emitter Vehicle

1994-03-01
940581
A study was carried out to increase our understanding of the emissions of air toxics from normal and high-emitting vehicles. This study is part of a larger study on fuel effects in high-emitting vehicles, and is part of the Auto/Oil Air Quality Improvement Research Program (AQIRP). Detailed measurements were carried out on the emissions of two vehicles run on industry-average gasoline. The two vehicles, having similar emissions control technologies, represent a high-emitting vehicle and a normal-emitting vehicle. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out on the gas - and particle-phase non-regulated emissions. The vehicles were tested over the U.S. EPA UDDS driving schedule. The high emitter was highly variable with regard to emissions, but always operated rich of the stoichiometric point. Up to 46% of fuel carbon was emitted as CO and unburned HC for the high emitter, compared to less than 1.4% for the normal emitter.
X