Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Application of a First Law Heat Balance Method to a Turbocharged Automotive Diesel Engine

2009-11-02
2009-01-2744
The First Law of Thermodynamics has been applied to the analysis of the dynamometer performance of a 2.0 litre,115 PS, common rail, turbocharged, automotive diesel engine operating under steady state conditions. Validation of the method is presented with correlation between the input fuel power and summed loss terms shown to be better than 3%. The study was conducted over a matrix of engine speed-load sites and maps of the underlying trends and magnitudes are presented. Detailed analysis of the relative heat balance contributions at a range of loads at fixed engine, water pump, and oil pump speeds is also presented. The proportions of heat rejected to the different primary paths (i.e. brake, coolant, oil, charge cooler, exhaust, and external) were found to vary with engine speed and load. Also, friction power was found to vary principally as a function of engine speed with some small dependency on engine load.
Technical Paper

An Investigation into the Influence of Lubricant Properties on the Oil Flow Rates and Heat Transportation Mechanisms in a Turbocharged Passenger Car Diesel Engine

2009-11-02
2009-01-2686
In this paper, data are presented showing how lubricant properties affect the heat flux, oil flow rates and temperatures within a turbocharged diesel passenger car engine. The oils tested cover a range of viscosities and base oil types. Mono-grades were used to remove the effect of shear thinning. The effect of viscosity modification was also examined. Lowest viscosity lubricants resulted in the lowest sump temperatures. More fuel was required to produce the same brake output from the engine with thicker oils. Engine oil heat rejection increased with viscosity, not just in absolute terms, but also as a fraction of the total heat loss. Viscosity does affect oil temperature through increased total heat from friction, and also through its effect on heat transfer. In addition, oil viscosity is itself dependent on operating temperature. Heat transfer theory suggests a relation between mass flow rate and heat transfer.
Technical Paper

An Investigation into Lubricant Related Poisoning of Automotive Three-Way Catalysts and Lambda Sensors

1989-02-01
890490
This paper investigates some of the parameters involved in the mechanism of poisoning of automotive three-way catalysts and Lambda sensors by means of a purpose designed engine test procedure. The aged catalysts have been examined both in terms of their conversion efficiency and surface chemical properties by SEM and EPMA techniques. Lambda sensors were also aged in the test engine and their sensitivity to lubricant phosphorus content and exhaust gas temperature examined. Results from 55 engine tests on 24 oils formulated with differing chemistries confirm that there is a strong link, which is statistically significant (99% confidence level), between lubricant phosphorus content and catalyst performance, but surprisingly oil consumption does not appear significant. The mechanism whereby the oil is combusted is proposed as being a determining factor. High phosphorus type oils reduced oxygen sensor performance, particularly at low exhaust temperatures (urban duty).
Technical Paper

Driving Down On-Highway Particulate Emissions

2006-04-03
2006-01-0916
It has been reported that particulate emissions from diesel vehicles could be associated with damaging human health, global warming and a reduction in air quality. These particles cover a very large size range, typically 3 to 10 000 nm. Filters in the vehicle exhaust systems can substantially reduce particulate emissions but until very recently it was not possible to directly characterise actual on-road emissions from a vehicle. This paper presents the first study of the effect of filter systems on the particulate emissions of a heavy-duty diesel vehicle during real-world driving. The presence of sulfur in the fuel and in the engine lubricant can lead to significant emissions of sulfate particles < 30 nm in size (nanoparticles).
X