Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

The Effect of Aromatics, MTBE, Olefins and T90 on Mass Exhaust Emissions from Current and Older Vehicles - The Auto/Oil Air Quality Improvement Research Program

1991-10-01
912322
Exhaust emissions were measured as a function of gasoline composition in two fleets of vehicles - 20 1989 vehicles and 14 1983-1985 vehicles. Eighteen different gasolines were tested which varied in aromatic, olefin, and MTBE content and in the 90 percent distillation temperature (T90). Subject to the cautions and qualifications described in the body of this paper, mass exhaust emissions in both fleets of vehicles were affected by changes in fuel composition. Responses to changes in MTBE and olefins were similar in both fleets: adding MTBE reduced emissions of HC and CO, and reducing olefins lowered emissions of NOx while raising emissions of HC. In the current fleet, reducing aromatics lowered HC and CO, while in the older fleet, reducing aromatics raised HC and lowered NOx. In the current fleet, lowering T90 reduced HC over 20%, while raising NOx slightly. In the older fleet, lowering T90 reduced HC by only 6%.
Technical Paper

Effects of Gasoline Composition and Properties on Vehicle Emissions: A Review of Prior Studies - Auto/Oil Air Quality Improvement Research Program

1991-10-01
912321
Prior studies of the effect of gasoline composition and physical properties on automotive exhaust and evaporative emissions have been reviewed. The prior work shows that the parameters selected for investigation in the Auto/Oil Air Quality Improvement Research Program (AQIRP) - gasoline aromatics content, addition of oxygenated compounds, olefins content, 90% distillation temperature, Reid vapor pressure, and sulfur content - can affect emissions. Effects have been observed on the mass of hydrocarbon, CO, and NOx emissions; on the reactivity of emissions toward ozone formation; and on the emissions of designated toxic air pollutants. The individual effects of some of the AQIRP parameters have been studied extensively in modern vehicles, but the most comprehensive studies of gasoline composition were conducted in early 1970 vehicles, and comparing the various studies shows that fuel effects can vary among vehicles with different control technology.
Technical Paper

Effects of Gasoline Sulfur Level on Mass Exhaust Emissions - Auto/Oil Air Quality Improvement Research Program

1991-10-01
912323
In this portion of the Auto/Oil Air Quality Improvement Research Program, ten 1989 model vehicles were tested using two fuels with different sulfur levels. These tests were run to determine instantaneous effects on exhaust emissions, not long-term durability effects. The high- and low-sulfur fuels contained 466 ppm and 49 ppm sulfur, respectively. Mass exhaust emissions of the fleet decreased as fuel sulfur level was reduced. Overall, HC, CO, and NOx were reduced by 16, 13, and 9 percent, respectively, when fuel sulfur level decreased. This effect appeared to be immediately reversible. Engine-out mass emissions were unaffected by changes in the fuel sulfur content, therefore, tailpipe emissions reductions were attributed to increased catalyst activity as the sulfur level was reduced.
X