Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Aftertreatment System Performance of a Fuel Reformer, LNT and SCR System Meeting EPA 2010 Emissions Standards on a Heavy-Duty Vehicle

2010-10-05
2010-01-1942
Diesel exhaust aftertreatment systems are required for meeting both EPA 2010 and final Tier 4 emission regulations. This paper addresses aftertreatment system performance of a fuel reformer, lean NOx trap (LNT) and selective catalytic reduction (SCR) system designed to meet the EPA 2010 emission standards for an on-highway heavy-duty vehicle. The aftertreatment system consists of a fuel dosing system, mixing elements, fuel reformer, LNT, diesel particulate filter (DPF), and SCR for meeting NOx and particulate emissions. System performance was characterized in an engine dynamometer test cell, using a development, 13L, heavy-duty engine. The catalyst performance was evaluated using degreened catalysts. Test results show that system performance met the EPA 2010 emission standards under a range of test conditions that were reflective of actual vehicle operation.
Journal Article

Deposit Formation in Urea-SCR Systems

2009-11-02
2009-01-2780
Formation of urea injection related deposits in a heavy-duty urea-SCR system was studied using an engine lab setup. The exhaust system was instrumented with thermocouples to track temperature changes caused by the liquid spray. Impact of operating parameters (exhaust and ambient temperature, urea solution injection rate) and system design modification (insulation, wiremesh insert) on the temperature profiles and deposit quantities was studied. Deposits were found in all tests conducted under typical exhaust temperatures. Deposition rate increased with lower exhaust and ambient temperature, and with higher injection rate. Mixer insulation and wiremesh upstream of the mixer reduced the deposits.
Technical Paper

Reversed Flow Converter: Fundamentals of the Design

1999-03-01
1999-01-0459
Reversed flow converter (RFC) employs periodical reversals of exhaust gas flow through a catalyst monolith for efficient use of its heat retention properties. This paper presents the results of computer simulation of three potential applications of the RFC: destruction of hydrocarbons and CO after diesel dual fuel engines, lean-NOx reduction, and cold-start emission control. An one-dimensional two-phase reactor model was used to simulate both typical converter operation transients and standard diesel engine tests. Both catalyst support structure and catalyst activity were demonstrated to affect the converter performance. Converter configurations were suggested that comprise catalyst, inert material and/or adsorbent. Simulation results are compared with engine tests of a converter treating a diesel dual fuel engine emissions.
Technical Paper

Novel Catalytic Converter for Natural Gas Powered Diesel Engines

1998-02-23
980194
A novel catalytic converter technology, employing periodical reversal of gas flow through the oxidation catalyst monolith, is being developed for treatment of exhaust gas from diesel engines fueled by natural gas in combination with diesel fuel. This technology allows to trap heat energy inside the monolith and thus efficiently destroy methane at converter inlet temperature as low as ambient. This paper describes the results of the initial stage of the converter development, including development of the mathematical model, computer simulation, and prototype testing. Simulation results indicate that dual fuel engine equipped with the reverse-flow converter could exceed the required destruction standards for hydrocarbons, including methane.
X