Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Development and Operation of Separation and Heat-Transfer Equipment of Water Recovery Systems for Space Stations

2000-07-10
2000-01-2253
The paper deals with description and results of long-term operation of separation and heat-and-mass transfer hardware incorporated in Mir's water recovery systems. Static separators outfitted with hydrophilic capillary/ porous elements, a rotary separator, a through-flow condenser/static separator combination, a membrane evaporator as well as separation and distillation schematics are reviewed. Operational and life performance data are discussed and recommendations for hardware use on ISS are made.
Technical Paper

Development and Testing of a Vacuum Distillation Subsystem for Water Reclamation from Urine

1999-07-12
1999-01-1993
This paper reviews the development and testing of the distillation subsystem of water regeneration system from urine (WRS-UM) based on a method of vacuum distillation with a rotary multistage vacuum distiller and a thermal pump. Test results show that with relatively small power consumption the subsystem using rotary three-stage vacuum distiller provides high rates of heat and mass transfer processes, useful productivity and distillate quality. The conducted tests have confirmed that it will be efficient to use the presented system as a part of WRS-UM system in Russian segment of the International Space Station.
Technical Paper

Rationale and Selection of a Distillation Subsystem for Water Reclamation from Urine

1998-07-13
981714
A selection of a distillation subsystem with a rotary multistage vacuum distiller (RMVD) and a heat pump (HP) for the system for water reclamation from urine for the international space station is substantiated. The results of computational/experimental analysis of specific energy for distillation with RMVD and HP of different type used are presented. The test results of an experimental system mockup are given. It is shown that the subsystem of a given type is stable in operation, features high condensate processing rate and low specific energy demand.
Technical Paper

Updated Systems for Water Recovery from Humidity Condensate and Urine for the International Space Station

1997-07-14
972559
At the initial phase of the construction of the international space station (ISS) water supply will be provided by the systems located in the Russian segment. The paper reviews the systems for water recovery from humidity condensate and urine to be incorporated in the Russian segment of the ISS. The similar systems have been successfully operated on the Mir space station. The updates aim at enhancing system cost-effectiveness and reliability. The system for water recovery from humidity condensate (WRS-C) features an added assembly for the removal of organic contaminants to be catalytically oxidized in an air/liquid flow at ambient temperature and pressure. The system for water reclamation from urine (WRS-U) incorporates a new distillation subsystem based on vacuum distillation with a multistage rotary distiller and a vapor compression or thermoelectric heat pump. The updating of the WRS-C system will enable an increase in the multifiltration bed's life at least two fold.
Technical Paper

Problems of Developing Systems for Water Reclamation from Urine for Perspective Space Stations

1996-07-01
961409
The paper deals with possible performance enhancement of the system for water reclamation from urine based on a principle of atmospheric distillation. It is shown by way of example using the system operating on Mir that the introduction of heat energy recuperation, an increase in heat-and-mass transfer efficiency on evaporation and the optimization of the air flowrate in the distillation cycle allow a rise in the capacity of the distillation assembly and a reduction in specific energy. The system outfitted with a rotary evaporator/separator and a thermoelectric heat pump is reviewed. The design and experimental data verify the feasibility and benefits of the system updating.
X