Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of CAE Nonlinear Crash Analysis to Aluminum Automotive Crashworthiness Design

1995-04-01
951080
After establishing the performance requirements and initial design assumptions, CAE concept models are used to set targets for major structural components to achieve desirable crash performance. When the designs of these major components become available they are analyzed in detail using nonlinear crash finite element models to evaluate their performance. All these components are assembled together later in a full car model to predict the overall vehicle crash performance. If the analysis shows that the targets are met, the design drawings are released for prototype fabrication. When CAE tools are effectively used, it will reduce product development cycle time and the number of prototypes. Crash analysis methodology has been validated and applied for steel automotive product development. Recently, aluminum is replacing steel for lighter and more fuel efficient automobiles. In general aluminum has quite different performance from steel, in particular with lower ductility.
Technical Paper

Finite Element Simulation of Driver Folded Air Bag Deployment

1991-10-01
912904
Finite element simulation of air bags as part of the automotive occupant restraint system is rapidly evolving as a new CAE tool in support of car product development. The majority of occupant computer simulations are concentrated around the study of occupant impact into the air bag when the air bag is substantially inflated. Further, the initial air bag representation in the simulation prior to deployment is of an unfolded configuration. These simplifications do not compromise simulation of crashes wherein the dummy comes in contact with the air bag after it is substantially full. The situation wherein the dummy interacts with the air bag early during the inflation is of interest when the occupant is located close to the air bag prior to deployment. In such cases the predeploy-ment geometry of the air bag in the model needs to be representative of the actual air bag folded configuration and the unfolding of the air bag needs to be simulated.
X