Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Multiple Evaporator Loop Heat Pipe

2000-07-10
2000-01-2410
Loop Heat Pipe (LHP) technology has advanced to the point that LHPs are baselined for thermal control systems in many spacecraft applications. These applications typically utilize a loop heat pipe with a single evaporator. However, many emerging applications involve heat sources with large thermal footprints, or multiple heat sources that would be better served by LHPs with multiple evaporators. Dual evaporator LHPs with separate reservoirs for each evaporator have been successfully developed, but the volume and weight of such systems become impractical as the number of the evaporators increase to more than three or four. Other investigators have proposed systems containing several evaporators that are coupled to a common reservoir with a conduit to contain a capillary link (secondary wick). This approach places several restrictions on the relative location of the evaporators due to the limitation of the capillary link.
Technical Paper

Ground Tests of Capillary Pumped Loop (CAPL 3) Flight Experiment

1998-07-13
981812
The success of CAPL 2 flight experiment has stirred many interests in using capillary pumped loop (CPL) devices for spacecraft thermal control. With only one evaporator in the loop, CAPL 2 was considered a point design for the Earth Observing System (EOS-AM). To realize the full benefits of CPLs, a reliable system with multiple evaporators must be developed and successfully demonstrated in space. The Capillary Pumped Loop (CAPL 3) Flight Experiment was designed to flight demonstrate a multiple evaporator CPL in a space environment. New hardware and concepts were developed for CAPL 3 to enable reliable start-up, constant conductance operation, and heat load sharing. A rigorous ground test program was developed and extensive characterization tests were conducted. All performance requirements were met, and the loop demonstrated very reliable operation.
Technical Paper

Start-Up Behaviors in the CAPL 2 Flight Experiment

1997-07-01
972328
The CAPL 2 Flight Experiment, flown on Space Shuttle STS-69 in 1995, was a flight demonstration of a full-scale prototype of a thermal control system planned for the Earth Observing System (EOS-AM) instruments Flight tests successfully demonstrated various CPL operations with simulated EOS-AM power profiles, including baseline and backup start-up procedures. In general, there were no significant differences in CPL performance between one-G and zero-G. However, some unusual behaviors were observed in several start-ups during the flight test. This paper describes CAPL 2 start-ups in detail, and offers explanations for the notably different zero-G behaviors.
Technical Paper

Testing of a Capillary Pumped Loop with Multiple Parallel Starter Pumps

1997-07-01
972329
A capillary pumped loop (CPL) with a single starter pump in its evaporator section has been demonstrated to have very reliable start-ups and robust operation. In order to service payloads with large thermal footprints or to service multiple payloads, a CPL with multiple starter pumps seems a logical approach. However, questions were raised concerning its reliability for successful start-ups. In order to verify the feasibility of such a concept, a test program was conducted at NASA Goddard Space Flight Center, using four starter pumps plumbed in parallel. The main purpose of this experimental investigation was to verify the system's ability to provide a successful start-up and to retain performance characteristics demonstrated by a CPL with multiple evaporators of the traditional two-port pump design. Tests were conducted progressively by installing one, two and four pumps in the test loop.
Technical Paper

Effects of Wick Properties on Pressure Oscillations in a Capillary Pumped Loop

1996-07-01
961434
During ground testing and micro-g operation of Capillary Pumped Loops (CPLs), oscillations of the system pressure drop have been observed. In some cases, it is highly probable that they contributed to deprimes of the system when the magnitude of the pressure oscillations exceeded the capillary limit of the wick. A hydrodynamic stability theory was proposed in 1994 to explain the oscillatory behavior of the CPL systems. The theory has given insight to the cause of pressure oscillations in CPL systems and their effect on system operation. The theory indicates that the pressure oscillations are a function of the system design parameters and the operational conditions. One of the system parameters which affects the pressure oscillations is the wick spring constant of the porous wick structure in the evaporator. The wick spring constant is determined from porosity, pore size and permeability of the wick.
Technical Paper

Hydrodynamic Aspects of Capillary Pumped Loops

1996-07-01
961435
The the past, the design of a Capillary Pumped Loop involved mainly on the thermodynamics and heat transfer aspects of the system. The fluid flow dynamics of the working fluid were deemed benign to the system performance. Recently theoretical and experimental studies have revealed several mechanisms that led to the deprime of the capillary pumps. These mechanisms were all related to the dynamics of the fluid movement inside the loop.
X