Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Development of Chrysler Oxidation and Deposit Engine Oil Certification Test

2015-09-01
2015-01-2045
With the impending development of GF-6, the newest generation of engine oil, a new standardized oil oxidation and piston deposit test was developed using Chrysler 3.6 L Pentastar engine. The performance requirements and approval for passenger car light duty gasoline engine oil categories are set by the International Lubricants Standardization and Approval committee (ILSAC) and the American Petroleum Institute (API) using standardized testing protocols developed under the guidance of ASTM, the American Society for Testing and Materials. This paper describes the development of a new ASTM Chrysler oxidation and deposit test that will be used to evaluate lubricants performance for oil thickening and viscosity increase, and piston deposits.
Technical Paper

The Impact of E85 Use on Lubricant Performance

2008-06-23
2008-01-1763
Ethanol is widely used as a gasoline component to provide a prescribed amount of oxygenates and for its perceived advantages of less dependence on petroleum based products and lowering overall CO2 emissions. In most cases the level of ethanol in gasoline does not exceed 10%. In some parts of the Unites States, E85 fuel consisting of 85% ethanol and 15% gasoline is commonly available. Many US vehicles sold today are specially adapted for use of both gasoline and high ethanol fuels; so-called Flexible Fuel Vehicles (FFV). While high ethanol fuels are currently a small percentage of the overall gasoline pool, they provide an interesting opportunity to study the effects that ethanol use in gasoline may have on lubricant related performance. Based on past industry experience with methanol based fuel, theoretical areas of concern for ethanol based fuels are valve train rust and potential problems associated with high amounts of water in the lubricant.
Technical Paper

Shear Stability of Automatic Transmission Fluids -- Methods and Analysis A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982673
This paper discusses four methods for measuring the resistance of transmission fluids to permanent viscosity loss through shear. The four methods include the Fuel Injector Shear Stability test, the Sonic shear test, the DEXRON®-III Cycling test and the KRL test. Each of these methods and their advantages are discussed and data provided for many OEM fluids and the effects of these methods on the final viscosity. The data indicates the KRL generates the maximum shear stress on the fluids compared to the other methods. The data also indicates the sonic shear method results are similar to those of the KRL test. The fuel injector test imparts the least stress to the fluid. Data is presented to show the correlation between viscosity changes obtained using these methods and viscosity changes observed with mileage accumulation in vehicle transmissions.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
X