Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Misfiring Effects on Scavenging Flow at Scavenging Port and Exhaust Pipe in a Small Two-Stroke-Engine

1993-03-01
930498
Misfiring cycles were detected by a conditional sampling method to demonstrate the differences between firing and misfiring of the scavenging flow characteristics at the scavenging port and exhaust pipe using LDV method. The results show that the flow at the scavenging port was not influenced significantly by misfiring, but the blowdown flow in the exhaust pipe greatly depended on the combustion status. The blow-down flow of fired cycles at a light-load condition was very similar to the flow at a full-load condition. It was also found that measured flow characteristics at partial load should not be considered by averaging firing and misfiring cycles. The occurrence pattern of misfiring should be quantified and considered in the analysis.
Technical Paper

Exhaust Gas Flow Behavior in a Two-Stroke Engine

1993-03-01
930502
The velocity variations of the burnt exhaust gas in a practical fired two-stroke engine operating under wide-open-throttle conditions were measured by a fiber LDV ( FLDV ). The characteristics of the exhaust flow are discussed in comparison with those in motoring and in a transfer port. The relation between velocity variation and pressure wave propagation in the exhaust pipe are also investigated. The measured results show that the velocity distribution in the exhaust pipe can be characterized as pulsative flow. The flow characteristics had large influence by the combustion pressure wave propagation. During exhaust and transfer-port opening, the intake flow and the blow-down flow have similar velocity gradient and peak location. The velocity distribution in the exhaust pipe was also measured, which showed pulsative flow variation having no recirculating vortex.
Technical Paper

Flow Vector Measurements at the Scavenging Ports in a Fired Two-Stroke Engine

1992-02-01
920420
The flow vector variations at the transfer port exit in a small two-stroke engine under firing condition were investigated experimentally. A fiber LDV system was used to measure the two-dimensional velocities near the cylinder to obtain the scavenging flow vector. The scavenging flow vector variations at different engine speeds were discussed, and the relation between its vector behavior and the pressure differences between the exhaust pipe and the crankcase was examined. The measurement results show that the velocity profiles at the scavenging port were not uniform and to obtain the representative velocity at the port exit was impossible. But the major features of the scavenging flow can be understood from the pressure difference between the exhaust pipe and the crankcase. The start timing of the scavenging flow was delayed due to the residual gas and high pressure in the cylinder when the scavenging port was opened.
X