Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of DPF System for Commercial Vehicle - Basic Characteristic and Active Regenerating Performance -

2003-10-27
2003-01-3182
Diesel Particulate Filters (DPFs) having an effectiveness of around 90% reduction of particulate matter (PM) are an essential after-treatment technique in order to meet upcoming PM regulations (Japan2005, Euro4, US07), which are all increasingly stringent. The continuous-regenerating DPF system [1] has been drawing particular attention, because it is possible to significantly simplify the system and reduce costs. The study presented herein investigated the application of a continuous-regenerating DPF system to commercial vehicles. Since exhaust temperatures that are encountered during a significant portion of engine operation are too low to initiate oxidation of PM, a continuously regenerating DPF must employ an oxidation catalyst. However, when the basic characteristics were investigated, an adequate PM oxidation rate was not obtained during city mode operation, during which the exhaust temperature was notably low.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

2008-10-06
2008-01-2494
Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Technical Paper

Technology for Environmental Harmonization and Future of the Diesel Engine

2009-04-20
2009-01-0318
Mankind developed and enjoyed the automobile civilization, and has lauded the prosperity that it brought about. Commercial vehicle launched the heavy duty diesel engine have been contributing by main transportation system for development of society in the world. However both the local and global environment issues appear depend on the life of mankind, in the world. Especially, global warming is the most stringent issue for our life on the earth. We human beings must lay our existence on the line, and call upon expertise to create solutions for this situation. Diesel engine has great potential for the global warming compatibility by it's high thermal efficiency and diesel vehicle is expected to conserve the environment and to improve the fuel saving for keeping resources in the world. This paper introduces the surrounding of the automobile, such as exhaust emission regulation for heavy duty diesel vehicle, amount and contribution of CO2 emission and noise.
X