Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

Flow visualization in exhaust manifold for automobile engine

2009-12-13
2009-28-0005
The aim of the experiment is to observe the exhaust gas flow starting from the exhaust manifold to the catalytic converter at the 4 stroke engine of the passenger car to enhance the system's improvement. The manifold connects each exhaust pipe from the engine cylinders to the catalytic converter. The velocity pattern inside the exhaust manifold is measured using particle image velocimetry (PIV) meanwhile the time series velocity data is measured by Laser Doppler Anemometer (LDA). In the experiment, flow conditions with four pipes working simultaneously or single pipe working independently are tested. The initial velocity condition shown in the next is set at the upstream where the flow is inside the circular pipe. The initial velocity is 28m/s for the all pipes acting and 14m/s for each pipes acting. There are also 3 conditions of measurement: with catalytic converter, without catalytic converter and with hollow catalytic converter.
Technical Paper

Analysis of Lubricant Oil Film Behavior on the Piston Surface According with Piston Shapes by Means of LIF and PIV

2009-12-13
2009-28-0003
The lubrication mechanism is discussed by measuring the oil film behavior. The oil film behavior is evaluated by the oil film thickness and oil film velocity map. The combination method of laser induced fluorescence method (LIF) and particle image velocimetry (PIV) is applied to measure the oil film behavior. The oil film thickness is measured by LIF and its velocity distributions are measured by PIV. The combination method can provide both of the film thickness and velocities simultaneously. The first trial is performed in the model engine for checking the dynamics measurement of the oil film thickness by the LIF. The results show a difference of the oil film thickness distribution with crank angle. The combination method is tested in the engine with 4-cycle and 2-cylinder optical access engine with motoring condition. One cylinder of the engine is sapphire cylinder for observing oil film behavior on the piston skirt. Two clearances of the piston skirt of 30 µm and 100 µm is tested.
Technical Paper

Database Constructions by LDA and PIV to Verify the Numerical Simulation of Gas Flows in the Cylinder of a Motored Engine

2009-12-13
2009-28-0010
Air velocities in the cylinder of motored engine were measured by laser Doppler anemometer (LDA) and particle image velocimetry (PIV) to make the standard database that will be used for verification of the numerical simulation. A 4-stroke, 4-valve test engine with transparent cylinder was operated with engine speed of 600rpm. The velocities on that condition were measured individually in vertical- and swirl-direction. The distributions of mean- and RMS- velocities are obtained from the measured data. Flow velocity through the intake valve was also measured at the top of the cylinder. As the results, the flow structure by each crank angle can be clarified. The present data can be commonly used for some numerical research group of RC238 in JSME for verification of numerical simulation results. The effect of the tumble generation valve (TGV) is evaluated by velocity distributions.
Technical Paper

Improvement of Atomization Characteristics of a Micro Nozzle Array Type Gasoline Injector

2009-12-13
2009-28-0041
Atomization characteristics of an ultrasonic fuel injector using a micro nozzle array were improved by change of horn geometries. Micro nozzles whose exit diameter d = 3 µm are mounted on a thin metal film, and the number of micro nozzles was varied from 2.0 × 104 to 1.2 × 105. Gasoline is periodically pushed out from the micro nozzles at frequencies from 62 to 65 kHz. A disk type PZT (Lead zirconium titanate) is used as an ultrasonic oscillator, and the oscillation is amplified by an axi-symmetric step-type horn. The oscillation amplitude is proportional to the area ratio of the horn. The number of micro nozzles increases with the increase in the small end diameter of the horn, while the oscillation amplitude decreases at the same time. In order to increase the fuel flow rate, the horn small end diameter Ds was varied from 10.5 to 25 mm, while the large end diameter is fixed at 30 mm.
Technical Paper

CFD Analysis of Airflow around the Rider of a Motorcycle for Rider Comfort Improvement

2009-04-20
2009-01-1155
Recently, rider comfort at highway driving has become an important issue in the performance improvement of motorcycles. Comfort includes windbreak, pressure on the rider, wind noise, visibility, and steering characteristics. However, most of these factors cannot be analyzed conventionally. Therefore we used CFD (Computational Fluid Dynamics) to examine the rider’s airflow environment. The environment of a rider on a motorcycle is an open space, very different from the passenger environment in an automobile. There are many airflow paths in a motorcycle with a cowl and a windscreen; thus, airflow behavior is constituted with a delicate balance. Though wind tunnel tests can give us an outline of airflow, CFD is a useful way to visualize the airflow of the rider’s environment and clarify the details. As the results, a lot of helpful knowledge was obtained for the development of new motorcycles.
Technical Paper

Spray Characteristics of a High-Pressure Swirl Injector for DISI Engines under High Ambient Temperature and Pressure Conditions

2008-04-14
2008-01-0130
An experimental study on a direct-injection gasoline spray initiated from a swirl injector was carried out in order to clarify the effects of ambient temperature and pressure. The sprays were formed in a pressure chamber where the maximum pressure and temperature reached 1.1 MPa and 423 K respectively. The spray-tip penetration for elevated ambient temperature is slightly longer than that for normal ambient temperature. From the measurement using phase Doppler anemometry, it was found that the Sauter mean diameter D32 is large under high ambient pressure condition. The effect of elevating the ambient temperature is to decrease D32 in the core region of the spray.
Technical Paper

Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation under Steady State Flow Condition

2008-04-14
2008-01-1063
This paper describes the evaluation of flow characteristics inside a model engine cylinder using particle image velocimetry (PIV), laser Doppler anemometry (LDA), and numerical simulation by Partial Cells in Cartesian coordinate (PCC) method. The main goal of the study is to clarify the differences in the velocity characteristics obtained by these methods. The model engine head has a four-valve system. Single- and dual- valve opening conditions of the model engine head were tested by a steady flow test rig. The flow structures were completely different for these valve opening conditions. The mean velocities and their distributions obtained by the three methods show satisfactory agreement. However, there were differences in the turbulence intensities under several conditions and measuring positions. Taylor's hypothesis in the integral length scale of turbulence was also compared with single LDA and PIV measurements.
Technical Paper

A CNG Two Stroke Cycle S.I. Engine Using Intermittent Low Pressure Fuel Injection from Scavenging Ports

2008-01-09
2008-28-0004
Performance of a CNG (Compressed natural gas) two stroke cycle S.I. engine using intermittent low pressure fuel injection from scavenging ports is investigated experimentally. The test engine is a two cylinder, 398 cm3, two stroke cycle spark ignition engine. Gaseous fuel injectors are attached at the engine block, and a CNG is injected into the scavenging passage through a fuel injection pipe. The fuel injection pressure is set at 0.255 MPa, and the fuel is injected intermittently during the scavenging process. The length and tip geometry of the fuel injection pipe are varied, and the effect on the engine performance is investigated. Using the scavenging port fuel injection, the BSFC is reduced by 25 %, and the lean burn limit extends from λ = 1.2 to 1.46, at the maximum. The peak of the NOx emission shifts to leaner side, and the THC emission is reduced by 47 % at the maximum.
Technical Paper

Effect of Fuel Injection Rate on the Performance of a 2-Stroke CNG Spark-Ignition Engine with Scavenging-Port Injection

2007-10-30
2007-32-0031
The most serious problem in a 2-stroke spark-ignition engine is poor trapping of fresh charge. To solve this problem, a scavenging-port injection was applied, and a fuel injection pipe (FIP) was installed at the injector tip. In a previous study, it was shown that the BSFC and emission characteristics were drastically improved. In the present study, effect of increase in the fuel injection rate was investigated. It is shown that the BSFC and the THC emissions improved at high engine speeds, while they slightly deteriorate at low engine speeds. The increase in the fuel injection rate is effective particularly at high engine speeds, where the scavenging duration becomes shorter.
Technical Paper

Spray Characteristics of an Ultrasonic Gasoline Injector Using a Micro Nozzle Array

2007-10-30
2007-32-0050
Effects of horn geometry on the atomization characteristics of an ultrasonic fuel injector using a micro nozzle array were investigated experimentally. Micro nozzles whose exit diameter d = 3 μm are mounted on a thin metal film. The number of the micro nozzles is from 2.0 × 104 to 1.2 × 105. Using an ultrasonic oscillator, gasoline is periodically pushed out from the micro nozzles at a frequency from 62 to 65 kHz. A disk type PZT (Lead zirconium titanate) is used as an ultrasonic oscillator, and the oscillation is amplified using a step-type horn. The input voltage to the PZT is varied from 0 to 200 V. To increase the fuel flow rate, the horn small end diameter DS is increased from 10.5 to 25 mm, while the large end diameter is fixed at 30 mm. To prevent forming a liquid film on the micro nozzle array, gutters are machined on the small end of the horn. It is shown that the SMD (Sauter mean diameter) of the spray is almost uniform around 10 to 14 μm.
Technical Paper

A Study on Optimization of an Over-Expansion Cycle Gasoline Engine with Late-Closing of Intake Valves

2007-09-16
2007-24-0089
This study presents the possibility of realizing better thermal efficiency in a spark-ignition engine with over-expansion cycle. The test engine with the displacement volume of 649cc was used together with four kinds of expansion ratios (geometric compression ratio) from 10 to 25, and four sets of intake valve closure timings from 0 to 110 ° C.A. ABDC. In previous studies, the indicated thermal efficiency reached 48% However, there was a problem that the maximum output was reduced to almost half compared with the conventional engine, since the effective displacement volume was decreased with decreasing the substantial compression ratio (εc). As a method of solving this problem, supercharging was applied by using compressed air supplied from an external compressor.
Technical Paper

A Measurement of Instantaneous Flow Rate of an Automotive Gaseous Fuel Injector

2007-09-16
2007-24-0008
Injection rate measurement of an automotive gaseous fuel injector was carried out by use of a one-dimensional pipe flow. A production gaseous fuel injector for an NGV (Natural gas vehicle) was used, which is for an intake port fuel injection. The injection pressure was set at 255 kPa(g), and the injection duration was varied from 3.4 to 20 msec. Nitrogen gas was used as the test gas. The test gas was injected into a pipe from the injector, and the static pressure history was acquired with a piezoelectric pressure transducer. One-dimensional, compressible, inviscid, adiabatic flow was assumed, and the instantaneous mass flow rate inside the pipe was estimated. By integrating the injection rate during the injection duration, the total amount of mass flow per one stroke was calculated. Calibration test was carried out by use of a pressure vessel, from which the total mass flow during one stroke was estimated.
Technical Paper

PIV/LIF measurements of oil film behavior on the piston in I. C. engine

2007-09-16
2007-24-0001
The combination method for measuring the oil film thickness and velocity is proposed. The oil film thickness is measured by laser induced fluorescence (LIF) method and its velocity is measured by particle image velocimetry (PIV). A model engine is employed in order to check the LIF measurement for oil film thickness, and an optical access engine based on production engine is utilized for both measurements of oil film thickness and velocity. In the combination method, LIF images are used in the PIV measurement instead of particle images. From the results, the oil film thickness and velocity can be measured simultaneously by the combination method utilizing only LIF dye. The oil film thickness and velocity are presented along with crank angle of the engine under the motoring operation. The oil film velocity is also measured under the firing operation.
Technical Paper

Development of Air/Oil-Cooled Motorcycle Engine Using Thermal and Fluid Analyses

2007-04-16
2007-01-0538
To achieve power output and cooling performance in motorcycle air-cooled engines equivalent to those in water-cooled engines, an engine utilizing air-flow generated by the moving motorcycle and a new oil-cooling system for an air-cooled engine was studied. The engine temperature distribution was obtained based on a CFD (Computational Fluid Dynamics) analysis of cooling-air/oil behavior using an inline four-cylinder 900cm3 engine. As a result of this study, engine temperature was sufficiently decreased and the difference in temperature among cylinders was reduced; the engine was tested in a prototype motorcycle.
Technical Paper

LDA Measurement of an Intermittent High-Speed Flow inside a Micro Wave Rotor Cell

2007-01-23
2007-01-0010
Velocity measurement of an intermittent high-speed flow inside a micro wave rotor cell was carried out using a laser Doppler anemometry (LDA). The cell is 3 × 3 mm rectangular tube, whose length is 42 mm. The pressure ratio and rotor speed of the wave rotor were set at 2.5 and 5,000 rpm, respectively. Ethanol droplets were seeded into the flow as scattering particles. By use of laser beam expanders, the probe volume of the LDA optics was minimized, and sub-millimeter special resolution is realized while a wide velocity range (-100 to 300 m/s) is kept. It is shown that the velocity histories at local positions inside the wave rotor cell can be obtained with the LDA optics. The rapid velocity increase and decrease, due to the primary and secondary shock waves, are observed, and the propagation speed of the shock waves was estimated. It is shown that the velocity profile inside the cell is flat and that the boundary layer thickness inside the cell is smaller than 0.5 mm.
Technical Paper

Basic Aspect of Combustion of CNG Incylinder Direct-Injection with Spark-Ignition

2005-10-23
2005-26-352
This paper presents basic combustion behavior of a compressed natural gas directly injected into a cylinder with spark-ignition. Experiments were conducted in a rapid-compression machine (RCM) with the cylinder bore of 80 mm, the stroke of 180 mm and the compression ratio of 10 at TDC. A CNG was injected through specially designed injectors which were installed at the side of combustion chamber with three modes, twin injectors in parallel, twin injectors in opposed and single injector. Combustion products were also measured with an infra-red gas analyzer. Direct photographs were taken with a high-speed video for observation. Effect of fuel injection timing was examined at constant spark timing together with the influence of injection mode. Results show several beneficial combustion characteristics of direct injection combustion using CNG. Combining with the results of combustion products and photographic observation, the combustion mechanism is discussed.
Technical Paper

Characteristics of CNG Direct Injection with Auto-Ignition

2005-10-23
2005-26-358
Characteristics of compressed natural gas (CNG) direct injection auto-ignition were investigated experimentally. A rapid compression machine (RCM) with the compression ratio of 10 was used. The diameter and thickness of the combustion chamber are 80 mm and 20 mm, respectively. After the compression start, fuel was directly injected with a single hole injector at the injection pressure of 7.0 MPa, and auto-ignition takes place. The fuel injection timing was varied from 50 ms to 60 ms from the compression start. Two kinds of natural gasses were tested; 12A (CH4: 99.1 %) and 13A (CH4: 86.3 %, C2H6: 5.2 %, C3H8: 1.9 % and others). A glow plug was installed in the cylinder in order to assist the ignition, which was set at 30 mm downstream from the fuel injector nozzle exit. Two kinds of auto-ignition processes were observed. For CNG 12A, auto-ignition always takes place after the end of the fuel injection. The ignition delay is relatively long (40 to 80 ms) and the fluctuation is large.
Technical Paper

Application of Scavenging-Port Injection to a Two-Stroke Boat Engine Fueled with CNG

2005-10-12
2005-32-0083
This paper presents the effect of application of scavenging-port injection to a two-stroke two-cylinder boat engine fueled with a compressed natural gas (CNG). Experiments were carried out at a constant speed of 3000 rpm and WOT condition with varying excess air ratio in lean region. A CNG injector for a production automobile engine was utilized and installed into the scavenging ports. Comparison was made with homogeneous charge operation using a gas mixer. By applying the scavenging-port injection, unburned-fuel in the exhaust gas was reduced close to half which must be due to the reduction of fuel short-cutting during the gas exchange process. The lean-burn limit was extended from the excess air ratio of 1.21 to 1.57. The maximum decrease of BSFC reached to 25 %. This suggests that stratified-combustion could be realized in its lean-burn region.
Technical Paper

Effects of Ambient Temperature and Pressure on Direct Injection Fuel Spray for S.I. Engine

2005-09-11
2005-24-091
High-pressure fuel spray proposed for direct injection gasoline engine was evaluated by means of a phase Doppler anemometer (PDA) and flow visualization. The intermittent fuel spray from a swirl type injector was injected in a constant volume chamber under various conditions of backpressure and ambient temperature. The backpressures were set to 0, 0.5 and 1 MPa in gauge pressure. The ambient temperatures were set to 293, 373, 423 and 473K. Normal-heptane was used as a fuel with injection pressure of 10MPa and injection frequency of 10Hz. Spray characteristics of the temporal and spatial distributions of the mean velocity and the mean diameter were measured by the PDA. Visualizations of spray were also made by a particle image velocimetry (PIV). The experimental results show the effects of backpressure and ambient temperature on the spray shape and characteristics of droplet size and velocity distributions.
X