Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Mechanical Properties of Gear Steels and Other Perspective Light Weight Materials for Gear Applications

2006-10-31
2006-01-3578
To improve fuel economy and possibly reduce product cost, light weight and high power density has been a development goal for commercial vehicle axle components. Light weight materials, such as aluminum alloys and polymer materials, as well as polymer matrix composite materials have been applied in various automotive components. However it is still a huge challenge to apply light weight materials in components which are subject to heavy load and thus have high stresses, such as gears for commercial vehicle axles or transmissions. To understand and illustrate this challenge, in this paper we will report and review the current state of art of carburized gear steels properties and performance.
Technical Paper

Investigation of the Effect of Sample Size on Fatigue Endurance Limit of a Carburized Steel

2006-04-03
2006-01-0539
Prediction of fatigue performance of large structures and components is generally done through the use of a fatigue analysis software, FEA stress/strain analysis, load spectra, and materials properties generated from laboratory tests with small specimens. Prior experience and test data has shown that a specimen size effect exists, i.e. the fatigue strength or endurance limit of large members is lower than that of small specimens made of same material. Obviously, the size effect is an important issue in fatigue design of large components. However a precise experimental study of the size effect is very difficult for several reasons. It is difficult to prepare geometrically similar specimens with increased volume which have the same microstructures and residual stress distributions throughout the entire material volume to be tested. Fatigue testing of large samples can also be a problem due to the limitation of load capacity of the test systems available.
Technical Paper

Cyclic Deformation, Fatigue and Fracture Toughness of a Nano-Composite High Strength Steel

2005-11-01
2005-01-3629
A nano-composite high strength (NCHS) steel was tested and evaluated in this work. Monotonic tension, strain controlled fatigue and fracture toughness tests were conducted at ambient temperature. Chemical composition, microstructure and fractography analysis were also performed. The NCHS steel showed excellent combination of high strength, high ductility and high fracture toughness with relatively low alloy content, compared with a S7 tool steel. Fatigue performance of the NCHS steel was also better than that of S7 tool steel. With the exceptional combination of high strength and high fracture toughness, the nano-composite high strength steel may have potential applications in gears, shafts, tools and dies where high fatigue performance, shock load resistance, wear and corrosion resistance is required.
Technical Paper

Contact Fatigue Tests and Life Simulations Using Computational Fracture Mechanics

2005-10-24
2005-01-3806
Computational fracture mechanics based FATIG3D program was used to simulate contact fatigue life of rough surface contacts in boundary to mixed lubrication regimes. Two-rollers contact fatigue tests were conducted and test results were compared with calculated contact fatigue lives. Calculated contact fatigue life agreed with test results well with the selected set of input data. The effect of several important parameters in the input data on contact fatigue life was evaluated computationally using FATIG3D. These parameters include: oil pressure distribution, crack face friction, direction of friction, friction coefficient, initial crack length, Hertzian stress, and residual stress distributions. The results obtained in this work improved basic understanding and the application of FATIG3D in simulating contact fatigue behavior.
Technical Paper

Seal Friction Effect on Drive Axle Efficiency

2005-10-24
2005-01-3779
As a part of a major research program with the aim of improving heavy truck drive axle fuel efficiency, this work focuses on seal friction torque test development and establishing pinion seal and wheel seal friction torque baseline data. Pinion seal and wheel seal friction torque was measured. The effect of speed and temperature on pinion seal friction torque was assessed. The effect of several coatings on pinion seal friction torque was evaluated. Pinion seal friction torque was also calculated and calculation result was compared with test data. Finally the impact of seal friction and bearing friction on total drive axle power loss was discussed.
X