Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

1999-08-02
1999-01-2431
The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station’s large solar arrays must be locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling, and analysis results on an ISS assembly mission.
Technical Paper

Solar Power System Analyses for Electric Propulsion Missions

1999-08-02
1999-01-2449
Solar electric propulsion (SEP) mission architectures are applicable to a wide range of NASA missions including human Mars exploration and robotic exploration of the outer planets. In this paper, we discuss the conceptual design and detailed performance analysis of an SEP stage electric power system (EPS). EPS performance, mass and area predictions are compared for several PV array technologies. Based on these studies, an EPS design for a 1-MW class, Human Mars Mission SEP stage was developed with a reasonable mass, 9.4 metric tons, and feasible deployed array area, 5800 m2. An EPS was also designed for the Europa Mapper spacecraft and had a mass of 151 kg and a deployed array area of 106 m2.
Technical Paper

Solar Electric Power System Analyses for Mars Surface Missions

1999-08-02
1999-01-2482
The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of ~10 metric tons, a ~5000-m2 deployable photovoltaic array using thin film solar cell technology.
Technical Paper

Performance of the Mir Cooperative Solar Array After 2.5 Years in Orbit

1999-08-02
1999-01-2632
The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States and Russia to produce 6 kW of power for the Russian space station Mir. Four, multi-orbit test sequences were executed between June 1996 and December 1998 to measure MCSA electrical performance. A dedicated Fortran computer code was developed to analyze the detailed thermal-electrical performance of the MCSA. The computational performance results compared very favorably with the measured flight data in most cases. Minor performance degradation was detected in one current generating section of the MCSA. Yet overall, the flight data indicated the MCSA was meeting and exceeding performance expectations. There was no precipitous performance loss due to contamination or other causes after 2.5 years of operation. In this paper, we review the MCSA flight electrical performance tests, data and computational modeling and discuss findings from data comparisons with the computational results.
X